
5 SQL: QUERIES, PROGRAMMING,
TRIGGERS

What men or gods are these? What maidens loth?

What mad pursuit? What struggle to escape?

What pipes and timbrels? What wild ecstasy?

—John Keats, Ode on a Grecian Urn

What is the average salary in the Toy department?

—Anonymous SQL user

Structured Query Language (SQL) is the most widely used commercial relational
database language. It was originally developed at IBM in the SEQUEL-XRM and
System-R projects (1974–1977). Almost immediately, other vendors introduced DBMS
products based on SQL, and it is now a de facto standard. SQL continues to evolve in
response to changing needs in the database area. Our presentation follows the current
ANSI/ISO standard for SQL, which is called SQL-92. We also discuss some important
extensions in the new standard, SQL:1999. While not all DBMS products support the
full SQL-92 standard yet, vendors are working toward this goal and most products
already support the core features. The SQL language has several aspects to it:

The Data Definition Language (DDL): This subset of SQL supports the
creation, deletion, and modification of definitions for tables and views. Integrity
constraints can be defined on tables, either when the table is created or later.
The DDL also provides commands for specifying access rights or privileges to
tables and views. Although the standard does not discuss indexes, commercial
implementations also provide commands for creating and deleting indexes. We
covered the DDL features of SQL in Chapter 3.

The Data Manipulation Language (DML): This subset of SQL allows users
to pose queries and to insert, delete, and modify rows. We covered DML com-
mands to insert, delete, and modify rows in Chapter 3.

Embedded and dynamic SQL: Embedded SQL features allow SQL code to be
called from a host language such as C or COBOL. Dynamic SQL features allow a
query to be constructed (and executed) at run-time.

Triggers: The new SQL:1999 standard includes support for triggers, which are
actions executed by the DBMS whenever changes to the database meet conditions
specified in the trigger.

119

120 Chapter 5

Security: SQL provides mechanisms to control users’ access to data objects such
as tables and views.

Transaction management: Various commands allow a user to explicitly control
aspects of how a transaction is to be executed.

Client-server execution and remote database access: These commands
control how a client application program can connect to an SQL database server,
or access data from a database over a network.

This chapter covers the query language features which are the core of SQL’s DML,
embedded and dynamic SQL, and triggers. We also briefly discuss some integrity
constraint specifications that rely upon the use of the query language features of SQL.
The ease of expressing queries in SQL has played a major role in the success of relational
database systems. Although this material can be read independently of the preceding
chapters, relational algebra and calculus (which we covered in Chapter 4) provide a
formal foundation for a large subset of the SQL query language. Much of the power
and elegance of SQL can be attributed to this foundation.

We will continue our presentation of SQL in Chapter 17, where we discuss aspects of
SQL that are related to security. We discuss SQL’s support for the transaction concept
in Chapter 18.

The rest of this chapter is organized as follows. We present basic SQL queries in Section
5.2 and introduce SQL’s set operators in Section 5.3. We discuss nested queries, in
which a relation referred to in the query is itself defined within the query, in Section
5.4. We cover aggregate operators, which allow us to write SQL queries that are not
expressible in relational algebra, in Section 5.5. We discuss null values, which are
special values used to indicate unknown or nonexistent field values, in Section 5.6. We
consider how SQL commands can be embedded in a host language in Section 5.7 and in
Section 5.8, where we discuss how relations can be accessed one tuple at a time through
the use of cursors. In Section 5.9 we describe how queries can be constructed at run-
time using dynamic SQL, and in Section 5.10, we discuss two standard interfaces to
a DBMS, called ODBC and JDBC. We discuss complex integrity constraints that can
be specified using the SQL DDL in Section 5.11, extending the SQL DDL discussion
from Chapter 3; the new constraint specifications allow us to fully utilize the query
language capabilities of SQL.

Finally, we discuss the concept of an active database in Sections 5.12 and 5.13. An ac-
tive database has a collection of triggers, which are specified by the DBA. A trigger
describes actions to be taken when certain situations arise. The DBMS monitors the
database, detects these situations, and invokes the trigger. Several current relational
DBMS products support some form of triggers, and the current draft of the SQL:1999
standard requires support for triggers.

SQL: Queries, Programming, Triggers 121

Levels of SQL-92: SQL is a continously evolving standard with the current
standard being SQL-92. When the standard is updated, DMBS vendors are usu-
ally not able to immediately conform to the new standard in their next product
releases because they also have to address issues such as performance improve-
ments and better system management. Therefore, three SQL-92 levels have been
defined: Entry SQL, Intermediate SQL, and Full SQL. Of these, Entry SQL is
closest to the previous standard, SQL-89, and therefore the easiest for a vendor
to support. Intermediate SQL includes about half of the new features of SQL-92.
Full SQL is the complete language.
The idea is to make it possible for vendors to achieve full compliance with the
standard in steps and for customers to get an idea of how complete a vendor’s
support for SQL-92 really is, at each of these steps. In reality, while IBM DB2,
Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support several
features from Intermediate and Full SQL—and many of these products support
features in the new SQL:1999 standard as well—they can claim full support only
for Entry SQL.

5.1 ABOUT THE EXAMPLES

We will present a number of sample queries using the following table definitions:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

We will give each query a unique number, continuing with the numbering scheme used
in Chapter 4. The first new query in this chapter has number Q15. Queries Q1 through
Q14 were introduced in Chapter 4.1 We illustrate queries using the instances S3 of
Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter 4, which we reproduce
in Figures 5.1, 5.2, and 5.3, respectively.

5.2 THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual evaluation strategy. A conceptual evaluation strategy is a way to
evaluate the query that is intended to be easy to understand, rather than efficient. A
DBMS would typically execute a query in a different and more efficient way.

1All references to a query can be found in the subject index for the book.

122 Chapter 5

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.1 An Instance S3 of Sailors

sid bid day
22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 5.2 An Instance R2 of Reserves

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 5.3 An Instance B1 of Boats

The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

Such a query intuitively corresponds to a relational algebra expression involving selec-
tions, projections, and cross-products. Every query must have a SELECT clause, which
specifies columns to be retained in the result, and a FROM clause, which specifies a
cross-product of tables. The optional WHERE clause specifies selection conditions on
the tables mentioned in the FROM clause. Let us consider a simple query.

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair 〈sname, age〉. If two or more sailors
have the same name and age, the answer still contains just one pair with that name

SQL: Queries, Programming, Triggers 123

and age. This query is equivalent to applying the projection operator of relational
algebra.

If we omit the keyword DISTINCT, we would get a copy of the row 〈s,a〉 for each sailor
with name s and age a; the answer would be a multiset of rows. A multiset is similar
to a set in that it is an unordered collection of elements, but there could be several
copies of each element, and the number of copies is significant—two multisets could
have the same elements and yet be different because the number of copies is different
for some elements. For example, {a, b, b} and {b, a, b} denote the same multiset, and
differ from the multiset {a, a, b}.

The answer to this query with and without the keyword DISTINCT on instance S3
of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for
Horatio appears twice if DISTINCT is omitted; this is because there are two sailors
called Horatio and age 35.

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Art 25.5
Bob 63.5

Figure 5.4 Answer to Q15

sname age
Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Horatio 35.0
Art 25.5
Bob 63.5

Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of relational
algebra.

(Q11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Incidentally,
when we want to retrieve all columns, as in this query, SQL provides a convenient

124 Chapter 5

shorthand: We can simply write SELECT *. This notation is useful for interactive
querying, but it is poor style for queries that are intended to be reused and maintained.

As these two examples illustrate, the SELECT clause is actually used to do projec-
tion, whereas selections in the relational algebra sense are expressed using the WHERE
clause! This mismatch between the naming of the selection and projection operators
in relational algebra and the syntax of SQL is an unfortunate historical accident.

We now consider the syntax of a basic SQL query in more detail.

The from-list in the FROM clause is a list of table names. A table name can be
followed by a range variable; a range variable is particularly useful when the
same table name appears more than once in the from-list.

The select-list is a list of (expressions involving) column names of tables named
in the from-list. Column names can be prefixed by a range variable.

The qualification in the WHERE clause is a boolean combination (i.e., an expres-
sion using the logical connectives AND, OR, and NOT) of conditions of the form
expression op expression, where op is one of the comparison operators {<, <=, =
, <>, >=, >}.2 An expression is a column name, a constant, or an (arithmetic or
string) expression.

The DISTINCT keyword is optional. It indicates that the table computed as an
answer to this query should not contain duplicates, that is, two copies of the same
row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL query,
they don’t tell us the meaning of a query. The answer to a query is itself a relation—

which is a multiset of rows in SQL!—whose contents can be understood by considering
the following conceptual evaluation strategy:

1. Compute the cross-product of the tables in the from-list.

2. Delete those rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

This straightforward conceptual evaluation strategy makes explicit the rows that must
be present in the answer to the query. However, it is likely to be quite inefficient. We
will consider how a DBMS actually evaluates queries in Chapters 12 and 13; for now,

2Expressions with NOT can always be replaced by equivalent expressions without NOT given the set
of comparison operators listed above.

SQL: Queries, Programming, Triggers 125

our purpose is simply to explain the meaning of a query. We illustrate the conceptual
evaluation strategy using the following query:

(Q1) Find the names of sailors who have reserved boat number 103.

It can be expressed in SQL as follows.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

Let us compute the answer to this query on the instances R3 of Reserves and S4 of
Sailors shown in Figures 5.6 and 5.7, since the computation on our usual example
instances (R2 and S3) would be unnecessarily tedious.

sid bid day
22 101 10/10/96
58 103 11/12/96

Figure 5.6 Instance R3 of Reserves

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Figure 5.7 Instance S4 of Sailors

The first step is to construct the cross-product S4×R3, which is shown in Figure 5.8.

sid sname rating age sid bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Figure 5.8 S4 × R3

The second step is to apply the qualification S.sid = R.sid AND R.bid=103. (Note that
the first part of this qualification requires a join operation.) This step eliminates all
but the last row from the instance shown in Figure 5.8. The third step is to eliminate
unwanted columns; only sname appears in the SELECT clause. This step leaves us with
the result shown in Figure 5.9, which is a table with a single column and, as it happens,
just one row.

126 Chapter 5

sname
rusty

Figure 5.9 Answer to Query Q1 on R3 and S4

5.2.1 Examples of Basic SQL Queries

We now present several example queries, many of which were expressed earlier in
relational algebra and calculus (Chapter 4). Our first example illustrates that the use
of range variables is optional, unless they are needed to resolve an ambiguity. Query
Q1, which we discussed in the previous section, can also be expressed as follows:

SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in both the
Sailors and Reserves tables. An equivalent way to write this query is:

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables. Range
variables need to be introduced explicitly only when the FROM clause contains more
than one occurrence of a relation.3 However, we recommend the explicit use of range
variables and full qualification of all occurrences of columns with a range variable
to improve the readability of your queries. We will follow this convention in all our
examples.

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

This query contains a join of two tables, followed by a selection on the color of boats.
We can think of B and R as rows in the corresponding tables that ‘prove’ that a sailor
with sid R.sid reserved a red boat B.bid. On our example instances R2 and S3 (Figures

3The table name cannot be used as an implicit range variable once a range variable is introduced
for the relation.

SQL: Queries, Programming, Triggers 127

5.1 and 5.2), the answer consists of the sids 22, 31, and 64. If we want the names of
sailors in the result, we must also consider the Sailors relation, since Reserves does not
contain this information, as the next example illustrates.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

This query contains a join of three tables followed by a selection on the color of boats.
The join with Sailors allows us to find the name of the sailor who, according to Reserves
tuple R, has reserved a red boat described by tuple B.

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = ‘Lubber’

This query is very similar to the previous one. Notice that in general there may be
more than one sailor called Lubber (since sname is not a key for Sailors); this query is
still correct in that it will return the colors of boats reserved by some Lubber, if there
are several sailors called Lubber.

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the sailor has
made some reservation. (If a sailor has not made a reservation, the second step in
the conceptual evaluation strategy would eliminate all rows in the cross-product that
involve this sailor.)

5.2.2 Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of columns. Each
item in a select-list can be of the form expression AS column name, where expression
is any arithmetic or string expression over column names (possibly prefixed by range
variables) and constants. It can also contain aggregates such as sum and count, which
we will discuss in Section 5.5. The SQL-92 standard also includes expressions over date

128 Chapter 5

Regular expressions in SQL: Reflecting the increased importance of text data,
SQL:1999 includes a more powerful version of the LIKE operator called SIMILAR.
This operator allows a rich set of regular expressions to be used as patterns while
searching text. The regular expressions are similar to those supported by the Unix
operating system for string searches, although the syntax is a little different.

and time values, which we will not discuss. Although not part of the SQL-92 standard,
many implementations also support the use of built-in functions such as sqrt, sin, and
mod.

(Q17) Compute increments for the ratings of persons who have sailed two different
boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = R1.sid AND S.sid = R2.sid

AND R1.day = R2.day AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expression1 = expression2.

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <, >, etc.) with
the ordering of strings determined alphabetically as usual. If we need to sort strings
by an order other than alphabetical (e.g., sort strings denoting month names in the
calendar order January, February, March, etc.), SQL-92 supports a general concept of
a collation, or sort order, for a character set. A collation allows the user to specify
which characters are ‘less than’ which others, and provides great flexibility in string
manipulation.

In addition, SQL provides support for pattern matching through the LIKE operator,
along with the use of the wild-card symbols % (which stands for zero or more arbitrary
characters) and (which stands for exactly one, arbitrary, character). Thus, ‘ AB%’
denotes a pattern that will match every string that contains at least three characters,
with the second and third characters being A and B respectively. Note that unlike the
other comparison operators, blanks can be significant for the LIKE operator (depending
on the collation for the underlying character set). Thus, ‘Jeff’ = ‘Jeff ’ could be true
while ‘Jeff’ LIKE ‘Jeff ’ is false. An example of the use of LIKE in a query is given
below.

SQL: Queries, Programming, Triggers 129

(Q18) Find the ages of sailors whose name begins and ends with B and has at least
three characters.

SELECT S.age
FROM Sailors S
WHERE S.sname LIKE ‘B %B’

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query form pre-
sented earlier. Since the answer to a query is a multiset of rows, it is natural to consider
the use of operations such as union, intersection, and difference. SQL supports these
operations under the names UNION, INTERSECT, and EXCEPT.4 SQL also provides other
set operations: IN (to check if an element is in a given set), op ANY, op ALL (to com-
pare a value with the elements in a given set, using comparison operator op), and
EXISTS (to check if a set is empty). IN and EXISTS can be prefixed by NOT, with the
obvious modification to their meaning. We cover UNION, INTERSECT, and EXCEPT in
this section, and the other operations in Section 5.4.

Consider the following query:

(Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND (B.color = ‘red’ OR B.color = ‘green’)

This query is easily expressed using the OR connective in the WHERE clause. However,
the following query, which is identical except for the use of ‘and’ rather than ‘or’ in
the English version, turns out to be much more difficult:

(Q6) Find the names of sailors who have reserved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy to
the English statements of the two queries, we would retrieve the names of sailors who
have reserved a boat that is both red and green. The integrity constraint that bid is a
key for Boats tells us that the same boat cannot have two colors, and so the variant

4Note that although the SQL-92 standard includes these operations, many systems currently sup-
port only UNION. Also, many systems recognize the keyword MINUS for EXCEPT.

130 Chapter 5

of the previous query with AND in place of OR will always return an empty answer set.
A correct statement of Query Q6 using AND is the following:

SELECT S.sname
FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2
WHERE S.sid = R1.sid AND R1.bid = B1.bid

AND S.sid = R2.sid AND R2.bid = B2.bid
AND B1.color=‘red’ AND B2.color = ‘green’

We can think of R1 and B1 as rows that prove that sailor S.sid has reserved a red boat.
R2 and B2 similarly prove that the same sailor has reserved a green boat. S.sname is
not included in the result unless five such rows S, R1, B1, R2, and B2 are found.

The previous query is difficult to understand (and also quite inefficient to execute,
as it turns out). In particular, the similarity to the previous OR query (Query Q5) is
completely lost. A better solution for these two queries is to use UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
UNION
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query says that we want the union of the set of sailors who have reserved red
boats and the set of sailors who have reserved green boats. In complete symmetry, the
AND query (Query Q6) can be rewritten as follows:

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
INTERSECT
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query actually contains a subtle bug—if there are two sailors such as Horatio in
our example instances B1, R2, and S3, one of whom has reserved a red boat and the
other has reserved a green boat, the name Horatio is returned even though no one
individual called Horatio has reserved both a red and a green boat. Thus, the query
actually computes sailor names such that some sailor with this name has reserved a

SQL: Queries, Programming, Triggers 131

red boat and some sailor with the same name (perhaps a different sailor) has reserved
a green boat.

As we observed in Chapter 4, the problem arises because we are using sname to identify
sailors, and sname is not a key for Sailors! If we select sid instead of sname in the
previous query, we would compute the set of sids of sailors who have reserved both red
and green boats. (To compute the names of such sailors requires a nested query; we
will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.

(Q19) Find the sids of all sailors who have reserved red boats but not green boats.

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
EXCEPT
SELECT S2.sid
FROM Sailors S2, Reserves R2, Boats B2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have reserved
green boats. Thus, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need to look
at the Sailors relation, and we can use the following simpler query:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
EXCEPT
SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’

Note that UNION, INTERSECT, and EXCEPT can be used on any two tables that are
union-compatible, that is, have the same number of columns and the columns, taken
in order, have the same types. For example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or have reserved boat 104.

SELECT S.sid
FROM Sailors S
WHERE S.rating = 10

132 Chapter 5

UNION
SELECT R.sid
FROM Reserves R
WHERE R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns 22
and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A final point
to note about UNION, INTERSECT, and EXCEPT follows. In contrast to the default that
duplicates are not eliminated unless DISTINCT is specified in the basic query form, the
default for UNION queries is that duplicates are eliminated! To retain duplicates, UNION
ALL must be used; if so, the number of copies of a row in the result is m + n, where
m and n are the numbers of times that the row appears in the two parts of the union.
Similarly, one version of INTERSECT retains duplicates—the number of copies of a row
in the result is min(m, n)—and one version of EXCEPT also retains duplicates—the
number of copies of a row in the result is m − n, where m corresponds to the first
relation.

5.4 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query is a query
that has another query embedded within it; the embedded query is called a subquery.
When writing a query, we sometimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table is a
subquery and appears as part of the main query. A subquery typically appears within
the WHERE clause of a query. Subqueries can sometimes appear in the FROM clause
or the HAVING clause (which we present in Section 5.5). This section discusses only
subqueries that appear in the WHERE clause. The treatment of subqueries appearing
elsewhere is quite similar. Examples of subqueries that appear in the FROM clause are
discussed in Section 5.5.1.

5.4.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier, using a
nested subquery:

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid = 103)

SQL: Queries, Programming, Triggers 133

The nested subquery computes the (multi)set of sids for sailors who have reserved boat
103 (the set contains 22, 31, and 74 on instances R2 and S3), and the top-level query
retrieves the names of sailors whose sid is in this set. The IN operator allows us to
test whether a value is in a given set of elements; an SQL query is used to generate
the set to be tested. Notice that it is very easy to modify this query to find all sailors
who have not reserved boat 103—we can just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a conceptual
evaluation strategy. In our example, the strategy consists of examining rows in Sailors,
and for each such row, evaluating the subquery over Reserves. In general, the concep-
tual evaluation strategy that we presented for defining the semantics of a query can be
extended to cover nested queries as follows: Construct the cross-product of the tables
in the FROM clause of the top-level query as before. For each row in the cross-product,
while testing the qualification in the WHERE clause, (re)compute the subquery.5 Of
course, the subquery might itself contain another nested subquery, in which case we
apply the same idea one more time, leading to an evaluation strategy with several
levels of nested loops.

As an example of a multiply-nested query, let us rewrite the following query.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’)

The innermost subquery finds the set of bids of red boats (102 and 104 on instance
B1). The subquery one level above finds the set of sids of sailors who have reserved
one of these boats. On instances B1, R2, and S3, this set of sids contains 22, 31, and
64. The top-level query finds the names of sailors whose sid is in this set of sids. For
the example instances, we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, we replace the outermost
occurrence of IN by NOT IN:

(Q21) Find the names of sailors who have not reserved a red boat.

5Since the inner subquery in our example does not depend on the ‘current’ row from the outer
query in any way, you might wonder why we have to recompute the subquery for each outer row. For

an answer, see Section 5.4.2.

134 Chapter 5

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’)

This query computes the names of sailors whose sid is not in the set 22, 31, and 64.

In contrast to Query Q21, we can modify the previous query (the nested version of
Q2) by replacing the inner occurrence (rather than the outer occurence) of IN with
NOT IN. This modified query would compute the names of sailors who have reserved
a boat that is not red, i.e., if they have a reservation, it is not for a red boat. Let us
consider how. In the inner query, we check that R.bid is not either 102 or 104 (the
bids of red boats). The outer query then finds the sids in Reserves tuples where the
bid is not 102 or 104. On instances B1, R2, and S3, the outer query computes the set
of sids 22, 31, 64, and 74. Finally, we find the names of sailors whose sid is in this set.

We can also modify the nested query Q2 by replacing both occurrences of IN with
NOT IN. This variant finds the names of sailors who have not reserved a boat that is
not red, i.e., who have only reserved red boats (if they’ve reserved any boats at all).
Proceeding as in the previous paragraph, on instances B1, R2, and S3, the outer query
computes the set of sids (in Sailors) other than 22, 31, 64, and 74. This is the set 29,
32, 58, 71, 85, and 95. We then find the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries that we have seen thus far, the inner subquery has been completely
independent of the outer query. In general the inner subquery could depend on the
row that is currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more:

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid = 103

AND R.sid = S.sid)

The EXISTS operator is another set comparison operator, such as IN. It allows us to
test whether a set is nonempty. Thus, for each Sailor row S, we test whether the set

SQL: Queries, Programming, Triggers 135

of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor
S has reserved boat 103, and we retrieve the name. The subquery clearly depends on
the current row S and must be re-evaluated for each row in Sailors. The occurrence
of S in the subquery (in the form of the literal S.sid) is called a correlation, and such
queries are called correlated queries.

This query also illustrates the use of the special symbol * in situations where all we
want to do is to check that a qualifying row exists, and don’t really want to retrieve
any columns from the row. This is one of the two uses of * in the SELECT clause
that is good programming style; the other is as an argument of the COUNT aggregate
operation, which we will describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute the
names of sailors who have not reserved a red boat. Closely related to EXISTS is
the UNIQUE predicate. When we apply UNIQUE to a subquery, it returns true if no
row appears twice in the answer to the subquery, that is, there are no duplicates; in
particular, it returns true if the answer is empty. (And there is also a NOT UNIQUE
version.)

5.4.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE, along
with their negated versions. SQL also supports op ANY and op ALL, where op is one of
the arithmetic comparison operators {<, <=, =, <>, >=, >}. (SOME is also available,
but it is just a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname = ‘Horatio’)

If there are several sailors called Horatio, this query finds all sailors whose rating is
better than that of some sailor called Horatio. On instance S3, this computes the
sids 31, 32, 58, 71, and 74. What if there were no sailor called Horatio? In this case
the comparison S.rating > ANY . . . is defined to return false, and the above query
returns an empty answer set. To understand comparisons involving ANY, it is useful to
think of the comparison being carried out repeatedly. In the example above, S.rating
is successively compared with each rating value that is an answer to the nested query.
Intuitively, the subquery must return a row that makes the comparison true, in order
for S.rating > ANY . . . to return true.

136 Chapter 5

(Q23) Find sailors whose rating is better than every sailor called Horatio.

We can obtain all such queries with a simple modification to Query Q22: just replace
ANY with ALL in the WHERE clause of the outer query. On instance S3, we would get
the sids 58 and 71. If there were no sailor called Horatio, the comparison S.rating
> ALL . . . is defined to return true! The query would then return the names of all
sailors. Again, it is useful to think of the comparison being carried out repeatedly.
Intuitively, the comparison must be true for every returned row in order for S.rating
> ALL . . . to return true.

As another illustration of ALL, consider the following query:

(Q24) Find the sailors with the highest rating.

SELECT S.sid
FROM Sailors S
WHERE S.rating >= ALL (SELECT S2.rating

FROM Sailors S2)

The subquery computes the set of all rating values in Sailors. The outer WHERE con-
dition is satisfied only when S.rating is greater than or equal to each of these rating
values, i.e., when it is the largest rating value. In the instance S3, the condition is
only satisfied for rating 10, and the answer includes the sids of sailors with this rating,
i.e., 58 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries

Let us revisit a query that we considered earlier using the INTERSECT operator.

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid

AND B2.color = ‘green’)

This query can be understood as follows: “Find all sailors who have reserved a red
boat and, further, have sids that are included in the set of sids of sailors who have

SQL: Queries, Programming, Triggers 137

reserved a green boat.” This formulation of the query illustrates how queries involving
INTERSECT can be rewritten using IN, which is useful to know if your system does not
support INTERSECT. Queries using EXCEPT can be similarly rewritten by using NOT IN.
To find the sids of sailors who have reserved red boats but not green boats, we can
simply replace the keyword IN in the previous query by NOT IN.

As it turns out, writing this query (Q6) using INTERSECT is more complicated because
we have to use sids to identify sailors (while intersecting) and have to return sailor
names:

SELECT S3.sname
FROM Sailors S3
WHERE S3.sid IN ((SELECT R.sid

FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’)
INTERSECT
(SELECTR2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’))

Our next example illustrates how the division operation in relational algebra can be
expressed in SQL.

(Q9) Find the names of sailors who have reserved all boats.

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

FROM Boats B)
EXCEPT
(SELECTR.bid
FROM Reserves R
WHERE R.sid = S.sid))

Notice that this query is correlated—for each sailor S, we check to see that the set of
boats reserved by S includes all boats. An alternative way to do this query without
using EXCEPT follows:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R

138 Chapter 5

WHERE R.bid = B.bid
AND R.sid = S.sid))

Intuitively, for each sailor we check that there is no boat that has not been reserved
by this sailor.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some computation or
summarization. As we noted earlier in this chapter, SQL allows the use of arithmetic
expressions. We now consider a powerful class of constructs for computing aggregate
values such as MIN and SUM. These features represent a significant extension of rela-
tional algebra. SQL supports five aggregate operations, which can be applied on any
column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN or MAX
(although SQL-92 does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance S3, the average age is 37.4. Of course, the WHERE clause can be used to
restrict the sailors who are considered in computing the average age:

(Q26) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be used
instead of AVG in the above queries to find the age of the youngest (oldest) sailor.

SQL: Queries, Programming, Triggers 139

However, finding both the name and the age of the oldest sailor is more tricky, as the
next query illustrates.

(Q27) Find the name and age of the oldest sailor. Consider the following attempt to
answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the name
of the sailors having that age. However, this query is illegal in SQL—if the SELECT
clause uses an aggregate operation, then it must use only aggregate operations unless
the query contains a GROUP BY clause! (The intuition behind this restriction should
become clear when we discuss the GROUP BY clause in Section 5.5.1.) Thus, we cannot
use MAX (S.age) as well as S.sname in the SELECT clause. We have to use a nested
query to compute the desired answer to Q27:

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX (S2.age)

FROM Sailors S2)

Observe that we have used the result of an aggregate operation in the subquery as
an argument to a comparison operation. Strictly speaking, we are comparing an age
value with the result of the subquery, which is a relation. However, because of the use
of the aggregate operation, the subquery is guaranteed to return a single tuple with
a single field, and SQL converts such a relation to a field value for the sake of the
comparison. The following equivalent query for Q27 is legal in the SQL-92 standard
but is not supported in many systems:

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2) = S.age

We can count the number of sailors using COUNT. This example illustrates the use of *
as an argument to COUNT, which is useful when we want to count all rows.

(Q28) Count the number of sailors.

SELECT COUNT (*)
FROM Sailors S

We can think of * as shorthand for all the columns (in the cross-product of the from-
list in the FROM clause). Contrast this query with the following query, which computes
the number of distinct sailor names. (Remember that sname is not a key!)

140 Chapter 5

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTINCT S.sname)
FROM Sailors S

On instance S3, the answer to Q28 is 10, whereas the answer to Q29 is 9 (because
two sailors have the same name, Horatio). If DISTINCT is omitted, the answer to Q29
is 10, because the name Horatio is counted twice. Thus, without DISTINCT Q29 is
equivalent to Q28. However, the use of COUNT (*) is better querying style when it is
applicable.

Aggregate operations offer an alternative to the ANY and ALL constructs. For example,
consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a rating of
10.

SELECT S.sname
FROM Sailors S
WHERE S.age > (SELECT MAX (S2.age)

FROM Sailors S2
WHERE S2.rating = 10)

On instance S3, the oldest sailor with rating 10 is sailor 58, whose age is 35. The
names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL, this query
could alternatively be written as follows:

SELECT S.sname
FROM Sailors S
WHERE S.age > ALL (SELECT S2.age

FROM Sailors S2
WHERE S2.rating = 10)

However, the ALL query is more error prone—one could easily (and incorrectly!) use
ANY instead of ALL, and retrieve sailors who are older than some sailor with a rating
of 10. The use of ANY intuitively corresponds to the use of MIN, instead of MAX, in the
previous query.

5.5.1 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to all (qualifying) rows in a relation.
Often we want to apply aggregate operations to each of a number of groups of rows
in a relation, where the number of groups depends on the relation instance (i.e., is not
known in advance). For example, consider the following query.

SQL: Queries, Programming, Triggers 141

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to 10, we could write 10 queries of
the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

where i = 1, 2, . . . , 10. Writing 10 such queries is tedious. More importantly, we may
not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query form, namely,
the GROUP BY clause. In fact, the extension also includes an optional HAVING clause
that can be used to specify qualifications over groups (for example, we may only
be interested in rating levels > 6). The general form of an SQL query with these
extensions is:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

The select-list in the SELECT clause consists of (1) a list of column names and
(2) a list of terms having the form aggop (column-name) AS new-name. The
optional AS new-name term gives this column a name in the table that is the
result of the query. Any of the aggregation operators can be used for aggop.

Every column that appears in (1) must also appear in grouping-list. The reason
is that each row in the result of the query corresponds to one group, which is a
collection of rows that agree on the values of columns in grouping-list. If a column
appears in list (1), but not in grouping-list, it is not clear what value should be
assigned to it in an answer row.

The expressions appearing in the group-qualification in the HAVING clause must
have a single value per group. The intuition is that the HAVING clause determines

142 Chapter 5

whether an answer row is to be generated for a given group. Therefore, a col-
umn appearing in the group-qualification must appear as the argument to an
aggregation operator, or it must also appear in grouping-list.

If the GROUP BY clause is omitted, the entire table is regarded as a single group.

We will explain the semantics of such a query through an example. Consider the query:

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18
years old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

We will evaluate this query on instance S3 of Sailors, reproduced in Figure 5.10 for
convenience. The instance of Sailors on which this query is to be evaluated is shown
in Figure 5.10. Extending the conceptual evaluation strategy presented in Section 5.2,
we proceed as follows. The first step is to construct the cross-product of tables in the
from-list. Because the only relation in the from-list in Query Q32 is Sailors, the result
is just the instance shown in Figure 5.10.

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.10 Instance S3 of Sailors

The second step is to apply the qualification in the WHERE clause, S.age >= 18. This
step eliminates the row 〈71, zorba, 10, 16〉. The third step is to eliminate unwanted
columns. Only columns mentioned in the SELECT clause, the GROUP BY clause, or
the HAVING clause are necessary, which means we can eliminate sid and sname in our
example. The result is shown in Figure 5.11. The fourth step is to sort the table

SQL: Queries, Programming, Triggers 143

according to the GROUP BY clause to identify the groups. The result of this step is
shown in Figure 5.12.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
9 35.0
3 25.5
3 63.5

Figure 5.11 After Evaluation Step 3

rating age
1 33.0
3 25.5
3 63.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

Figure 5.12 After Evaluation Step 4

The fifth step is to apply the group-qualification in the HAVING clause, that is, the
condition COUNT (*) > 1. This step eliminates the groups with rating equal to 1, 9, and
10. Observe that the order in which the WHERE and GROUP BY clauses are considered
is significant: If the WHERE clause were not considered first, the group with rating=10
would have met the group-qualification in the HAVING clause. The sixth step is to
generate one answer row for each remaining group. The answer row corresponding
to a group consists of a subset of the grouping columns, plus one or more columns
generated by applying an aggregation operator. In our example, each answer row has
a rating column and a minage column, which is computed by applying MIN to the
values in the age column of the corresponding group. The result of this step is shown
in Figure 5.13.

rating minage
3 25.5
7 35.0
8 25.5

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT in the SELECT clause, duplicates are eliminated in an
additional, and final, step.

5.5.2 More Examples of Aggregate Queries

(Q33) For each red boat, find the number of reservations for this boat.

144 Chapter 5

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid

On instances B1 and R2, the answer to this query contains the two tuples 〈102, 3〉 and
〈104, 2〉.

It is interesting to observe that the following version of the above query is illegal:

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
GROUP BY B.bid
HAVING B.color = ‘red’

Even though the group-qualification B.color = ‘red’ is single-valued per group, since
the grouping attribute bid is a key for Boats (and therefore determines color), SQL
disallows this query. Only columns that appear in the GROUP BY clause can appear in
the HAVING clause, unless they appear as arguments to an aggregate operator in the
HAVING clause.

(Q34) Find the average age of sailors for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING COUNT (*) > 1

After identifying groups based on rating, we retain only groups with at least two sailors.
The answer to this query on instance S3 is shown in Figure 5.14.

rating avgage
3 44.5
7 40.0
8 40.5
10 25.5

Figure 5.14 Q34 Answer

rating avgage
3 45.5
7 40.0
8 40.5
10 35.0

Figure 5.15 Q35 Answer

rating avgage
3 45.5
7 40.0
8 40.5

Figure 5.16 Q36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING clause
can have a nested subquery, just like the WHERE clause. Note that we can use S.rating
inside the nested subquery in the HAVING clause because it has a single value for the
current group of sailors:

SQL: Queries, Programming, Triggers 145

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

(Q35) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

In this variant of Query Q34, we first remove tuples with age <= 18 and group the
remaining tuples by rating. For each group, the subquery in the HAVING clause com-
putes the number of tuples in Sailors (without applying the selection age <= 18) with
the same rating value as the current group. If a group has less than 2 sailors, it is
discarded. For each remaining group, we output the average age. The answer to this
query on instance S3 is shown in Figure 5.15. Notice that the answer is very similar
to the answer for Q34, with the only difference being that for the group with rating
10, we now ignore the sailor with age 16 while computing the average.

(Q36) Find the average age of sailors who are of voting age (i.e., at least 18 years old)
for each rating level that has at least two such sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating AND S2.age >= 18)

The above formulation of the query reflects the fact that it is a variant of Q35. The
answer to Q36 on instance S3 is shown in Figure 5.16. It differs from the answer to
Q35 in that there is no tuple for rating 10, since there is only one tuple with rating 10
and age ≥ 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation shows:

146 Chapter 5

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is applied
before grouping is done; thus, only sailors with age > 18 are left when grouping is
done. It is instructive to consider yet another way of writing this query:

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,

COUNT (*) AS ratingcount
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating) AS Temp

WHERE Temp.ratingcount > 1

This alternative brings out several interesting points. First, the FROM clause can also
contain a nested subquery according to the SQL-92 standard.6 Second, the HAVING
clause is not needed at all. Any query with a HAVING clause can be rewritten without
one, but many queries are simpler to express with the HAVING clause. Finally, when a
subquery appears in the FROM clause, using the AS keyword to give it a name is neces-
sary (since otherwise we could not express, for instance, the condition Temp.ratingcount
> 1).

(Q37) Find those ratings for which the average age of sailors is the minimum over all
ratings.

We use this query to illustrate that aggregate operations cannot be nested. One might
consider writing it as follows:

SELECT S.rating
FROM Sailors S
WHERE AVG (S.age) = (SELECT MIN (AVG (S2.age))

FROM Sailors S2
GROUP BY S2.rating)

A little thought shows that this query will not work even if the expression MIN (AVG
(S2.age)), which is illegal, were allowed. In the nested query, Sailors is partitioned
into groups by rating, and the average age is computed for each rating value. For each
group, applying MIN to this average age value for the group will return the same value!

6Not all systems currently support nested queries in the FROM clause.

SQL: Queries, Programming, Triggers 147

A correct version of the above query follows. It essentially computes a temporary table
containing the average age for each rating value and then finds the rating(s) for which
this average age is the minimum.

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage) FROM Temp)

The answer to this query on instance S3 is 〈10, 25.5〉.

As an exercise, the reader should consider whether the following query computes the
same answer, and if not, why:

SELECT Temp.rating, MIN (Temp.avgage)
FROM (SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

GROUP BY Temp.rating

5.6 NULL VALUES *

Thus far, we have assumed that column values in a row are always known. In practice
column values can be unknown. For example, when a sailor, say Dan, joins a yacht
club, he may not yet have a rating assigned. Since the definition for the Sailors table
has a rating column, what row should we insert for Dan? What is needed here is a
special value that denotes unknown. Suppose the Sailor table definition was modified
to also include a maiden-name column. However, only married women who take their
husband’s last name have a maiden name. For single women and for men, the maiden-
name column is inapplicable. Again, what value do we include in this column for the
row representing Dan?

SQL provides a special column value called null to use in such situations. We use
null when the column value is either unknown or inapplicable. Using our Sailor table
definition, we might enter the row 〈98, Dan, null, 39〉 to represent Dan. The presence
of null values complicates many issues, and we consider the impact of null values on
SQL in this section.

5.6.1 Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the row for Dan, is
this condition true or false? Since Dan’s rating is unknown, it is reasonable to say

148 Chapter 5

that this comparison should evaluate to the value unknown. In fact, this is the case
for the comparisons rating > 8 and rating < 8 as well. Perhaps less obviously, if we
compare two null values using <, >, =, and so on, the result is always unknown. For
example, if we have null in two distinct rows of the sailor relation, any comparison
returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a column
value is null; for example, we can say rating IS NULL, which would evaluate to true on
the row representing Dan. We can also say rating IS NOT NULL, which would evaluate
to false on the row for Dan.

5.6.2 Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and rating
= 8 AND age < 40? Considering the row for Dan again, because age < 40, the first
expression evaluates to true regardless of the value of rating, but what about the
second? We can only say unknown.

But this example raises an important point—once we have null values, we must define
the logical operators AND, OR, and NOT using a three-valued logic in which expressions
evaluate to true, false, or unknown. We extend the usual interpretations of AND,
OR, and NOT to cover the case when one of the arguments is unknown as follows. The
expression NOT unknown is defined to be unknown. OR of two arguments evaluates to
true if either argument evaluates to true, and to unknown if one argument evaluates
to false and the other evaluates to unknown. (If both arguments are false, of course,
it evaluates to false.) AND of two arguments evaluates to false if either argument
evaluates to false, and to unknown if one argument evaluates to unknown and the other
evaluates to true or unknown. (If both arguments are true, it evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQL, and the impact of null values must
be recognized. For example, the qualification in the WHERE clause eliminates rows (in
the cross-product of tables named in the FROM clause) for which the qualification does
not evaluate to true. Therefore, in the presence of null values, any row that evaluates
to false or to unknown is eliminated. Eliminating rows that evaluate to unknown has
a subtle but significant impact on queries, especially nested queries involving EXISTS
or UNIQUE.

Another issue in the presence of null values is the definition of when two rows in a
relation instance are regarded as duplicates. The SQL definition is that two rows are
duplicates if corresponding columns are either equal, or both contain null. Contrast

SQL: Queries, Programming, Triggers 149

this definition with the fact that if we compare two null values using =, the result is
unknown! In the context of duplicates, this comparison is implicitly treated as true,
which is an anomaly.

As expected, the arithmetic operations +,−, ∗, and / all return null if one of their
arguments is null. However, nulls can cause some unexpected behavior with aggre-
gate operations. COUNT(*) handles null values just like other values, that is, they get
counted. All the other aggregate operations (COUNT, SUM, AVG, MIN, MAX, and variations
using DISTINCT) simply discard null values—thus SUM cannot be understood as just
the addition of all values in the (multi)set of values that it is applied to; a preliminary
step of discarding all null values must also be accounted for. As a special case, if one of
these operators—other than COUNT—is applied to only null values, the result is again
null.

5.6.4 Outer Joins

Some interesting variants of the join operation that rely on null values, called outer
joins, are supported in SQL. Consider the join of two tables, say Sailors ��c Reserves.
Tuples of Sailors that do not match some row in Reserves according to the join condition
c do not appear in the result. In an outer join, on the other hand, Sailor rows without
a matching Reserves row appear exactly once in the result, with the result columns
inherited from Reserves assigned null values.

In fact, there are several variants of the outer join idea. In a left outer join, Sailor
rows without a matching Reserves row appear in the result, but not vice versa. In a
right outer join, Reserves rows without a matching Sailors row appear in the result,
but not vice versa. In a full outer join, both Sailors and Reserves rows without a
match appear in the result. (Of course, rows with a match always appear in the result,
for all these variants, just like the usual joins, sometimes called inner joins, presented
earlier in Chapter 4.)

SQL-92 allows the desired type of join to be specified in the FROM clause. For example,
the following query lists 〈sid,bid〉 pairs corresponding to sailors and boats they have
reserved:

SELECT Sailors.sid, Reserves.bid
FROM Sailors NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that the join condition is equality on all common at-
tributes (in this example, sid), and the WHERE clause is not required (unless we want
to specify additional, non-join conditions). On the instances of Sailors and Reserves
shown in Figure 5.6, this query computes the result shown in Figure 5.17.

150 Chapter 5

sid bid
22 101
31 null
58 103

Figure 5.17 Left Outer Join of Sailor1 and Reserves1

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field definition, for
example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not
allowed to take on null values. Thus, there is an implicit NOT NULL constraint for every
field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should consult
one of the many books devoted to SQL for a more detailed treatment of the topic.

5.7 EMBEDDED SQL *

We have looked at a wide range of SQL query constructs, treating SQL as an inde-
pendent language in its own right. A relational DBMS supports an interactive SQL
interface, and users can directly enter SQL commands. This simple approach is fine
as long as the task at hand can be accomplished entirely with SQL commands. In
practice we often encounter situations in which we need the greater flexibility of a
general-purpose programming language, in addition to the data manipulation facilities
provided by SQL. For example, we may want to integrate a database application with
a nice graphical user interface, or we may want to ask a query that cannot be expressed
in SQL. (See Chapter 27 for examples of such queries.)

To deal with such situations, the SQL standard defines how SQL commands can be
executed from within a program in a host language such as C or Java. The use of
SQL commands within a host language program is called embedded SQL. Details
of embedded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

Conceptually, embedding SQL commands in a host language program is straightfor-
ward. SQL statements (i.e., not declarations) can be used wherever a statement in the
host language is allowed (with a few restrictions). Of course, SQL statements must be
clearly marked so that a preprocessor can deal with them before invoking the compiler
for the host language. Also, any host language variables used to pass arguments into
an SQL command must be declared in SQL. In particular, some special host language

SQL: Queries, Programming, Triggers 151

variables must be declared in SQL (so that, for example, any error conditions arising
during SQL execution can be communicated back to the main application program in
the host language).

There are, however, two complications to bear in mind. First, the data types recognized
by SQL may not be recognized by the host language, and vice versa. This mismatch is
typically addressed by casting data values appropriately before passing them to or from
SQL commands. (SQL, like C and other programming languages, provides an operator
to cast values of one type into values of another type.) The second complication has
to do with the fact that SQL is set-oriented; commands operate on and produce
tables, which are sets (or multisets) of rows. Programming languages do not typically
have a data type that corresponds to sets or multisets of rows. Thus, although SQL
commands deal with tables, the interface to the host language is constrained to be
one row at a time. The cursor mechanism is introduced to deal with this problem; we
discuss cursors in Section 5.8.

In our discussion of embedded SQL, we assume that the host language is C for con-
creteness, because minor differences exist in how SQL statements are embedded in
different host languages.

5.7.1 Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-language
variables must be prefixed by a colon (:) in SQL statements and must be declared be-
tween the commands EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE
SECTION. The declarations are similar to how they would look in a C program and,
as usual in C, are separated by semicolons. For example, we can declare variables
c sname, c sid, c rating, and c age (with the initial c used as a naming convention to
emphasize that these are host language variables) as follows:

EXEC SQL BEGIN DECLARE SECTION
char c sname[20];
long c sid;
short c rating;
float c age;
EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various C types,
since we have just declared a collection of C variables whose values are intended to
be read (and possibly set) in an SQL run-time environment when an SQL statement
that refers to them is executed. The SQL-92 standard defines such a correspondence
between the host language types and SQL types for a number of host languages. In our
example c sname has the type CHARACTER(20) when referred to in an SQL statement,

152 Chapter 5

c sid has the type INTEGER, c rating has the type SMALLINT, and c age has the type
REAL.

An important point to consider is that SQL needs some way to report what went wrong
if an error condition arises when executing an SQL statement. The SQL-92 standard
recognizes two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an error condition
arises, without specifying further just what error a particular negative integer denotes.
SQLSTATE, introduced in the SQL-92 standard for the first time, associates predefined
values with several common error conditions, thereby introducing some uniformity to
how errors are reported. One of these two variables must be declared. The appropriate
C type for SQLCODE is long and the appropriate C type for SQLSTATE is char[6], that
is, a character string that is five characters long. (Recall the null-terminator in C
strings!) In this chapter, we will assume that SQLSTATE is declared.

5.7.2 Embedding SQL Statements

All SQL statements that are embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be pre-
fixed by EXEC SQL. An SQL statement can essentially appear in any place in the host
language program where a host language statement can appear.

As a simple example, the following embedded SQL statement inserts a row, whose
column values are based on the values of the host language variables contained in it,
into the Sailors relation:

EXEC SQL INSERT INTO Sailors VALUES (:c sname, :c sid, :c rating, :c age);

Observe that a semicolon terminates the command, as per the convention for termi-
nating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each embedded
SQL statement. SQL provides the WHENEVER command to simplify this tedious task:

EXEC SQL WHENEVER [SQLERROR | NOT FOUND] [CONTINUE | GOTO stmt]

The intent is that after each embedded SQL statement is executed, the value of
SQLSTATE should be checked. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably responsi-
ble for error/exception handling. Control is also transferred to stmt if NOT FOUND is
specified and the value of SQLSTATE is 02000, which denotes NO DATA.

SQL: Queries, Programming, Triggers 153

5.8 CURSORS *

A major problem in embedding SQL statements in a host language like C is that an
impedance mismatch occurs because SQL operates on sets of records, whereas languages
like C do not cleanly support a set-of-records abstraction. The solution is to essentially
provide a mechanism that allows us to retrieve rows one at a time from a relation.

This mechanism is called a cursor. We can declare a cursor on any relation or on any
SQL query (because every query returns a set of rows). Once a cursor is declared, we
can open it (which positions the cursor just before the first row); fetch the next row;
move the cursor (to the next row, to the row after the next n, to the first row, or to
the previous row, etc., by specifying additional parameters for the FETCH command);
or close the cursor. Thus, a cursor essentially allows us to retrieve the rows in a table
by positioning the cursor at a particular row and reading its contents.

5.8.1 Basic Cursor Definition and Usage

Cursors enable us to examine in the host language program a collection of rows com-
puted by an embedded SQL statement:

We usually need to open a cursor if the embedded statement is a SELECT (i.e., a
query). However, we can avoid opening a cursor if the answer contains a single
row, as we will see shortly.

INSERT, DELETE, and UPDATE statements typically don’t require a cursor, although
some variants of DELETE and UPDATE do use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value
to the host variable c sid, declared earlier, as follows:

EXEC SQL SELECT S.sname, S.age
INTO :c sname, :c age
FROM Sailors S
WHERE S.sid = :c sid;

The INTO clause allows us to assign the columns of the single answer row to the host
variables c sname and c age. Thus, we do not need a cursor to embed this query in
a host language program. But what about the following query, which computes the
names and ages of all sailors with a rating greater than the current value of the host
variable c minrating?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating

154 Chapter 5

This query returns a collection of rows, not just one row. When executed interactively,
the answers are printed on the screen. If we embed this query in a C program by
prefixing the command with EXEC SQL, how can the answers be bound to host language
variables? The INTO clause is not adequate because we must deal with several rows.
The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating;

This code can be included in a C program, and once it is executed, the cursor sinfo is
defined. Subsequently, we can open the cursor:

OPEN sinfo;

The value of c minrating in the SQL query associated with the cursor is the value of
this variable when we open the cursor. (The cursor declaration is processed at compile
time, and the OPEN command is executed at run-time.)

A cursor can be thought of as ‘pointing’ to a row in the collection of answers to the
query associated with it. When a cursor is opened, it is positioned just before the first
row. We can use the FETCH command to read the first row of cursor sinfo into host
language variables:

FETCH sinfo INTO :c sname, :c age;

When the FETCH statement is executed, the cursor is positioned to point at the next
row (which is the first row in the table when FETCH is executed for the first time after
opening the cursor) and the column values in the row are copied into the corresponding
host variables. By repeatedly executing this FETCH statement (say, in a while-loop in
the C program), we can read all the rows computed by the query, one row at a time.
Additional parameters to the FETCH command allow us to position a cursor in very
flexible ways, but we will not discuss them.

How do we know when we have looked at all the rows associated with the cursor?
By looking at the special variables SQLCODE or SQLSTATE, of course. SQLSTATE, for
example, is set to the value 02000, which denotes NO DATA, to indicate that there are
no more rows if the FETCH statement positions the cursor after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

SQL: Queries, Programming, Triggers 155

It can be opened again if needed, and the value of : c minrating in the SQL query
associated with the cursor would be the value of the host variable c minrating at that
time.

5.8.2 Properties of Cursors

The general form of a cursor declaration is:

DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR FOR
some query
[ORDER BY order-item-list]
[FOR READ ONLY | FOR UPDATE]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if it is a cursor
on a base relation or an updatable view, to be an updatable cursor (FOR UPDATE).
If it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned. For example, if sinfo is an
updatable cursor and is open, we can execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

This embedded SQL statement modifies the rating value of the row currently pointed
to by cursor sinfo; similarly, we can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor (see
below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that vari-
ants of the FETCH command can be used to position the cursor in very flexible ways;
otherwise, only the basic FETCH command, which retrieves the next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a
private copy of the collection of answer rows. Otherwise, and by default, other actions
of some transaction could modify these rows, creating unpredictable behavior. For
example, while we are fetching rows using the sinfo cursor, we might modify rating
values in Sailor rows by concurrently executing the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

156 Chapter 5

Consider a Sailor row such that: (1) it has not yet been fetched, and (2) its original
rating value would have met the condition in the WHERE clause of the query associated
with sinfo, but the new rating value does not. Do we fetch such a Sailor row? If
INSENSITIVE is specified, the behavior is as if all answers were computed and stored
when sinfo was opened; thus, the update command has no effect on the rows fetched
by sinfo if it is executed after sinfo is opened. If INSENSITIVE is not specified, the
behavior is implementation dependent in this situation.

Finally, in what order do FETCH commands retrieve rows? In general this order is
unspecified, but the optional ORDER BY clause can be used to specify a sort order.
Note that columns mentioned in the ORDER BY clause cannot be updated through the
cursor!

The order-item-list is a list of order-items; an order-item is a column name, op-
tionally followed by one of the keywords ASC or DESC. Every column mentioned in the
ORDER BY clause must also appear in the select-list of the query associated with the
cursor; otherwise it is not clear what columns we should sort on. The keywords ASC or
DESC that follow a column control whether the result should be sorted—with respect
to that column—in ascending or descending order; the default is ASC. This clause is
applied as the last step in evaluating the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure 5.13.
Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows have the
same minage value, these rows are sorted further in descending order by rating. The
cursor would fetch the rows in the order shown in Figure 5.18.

rating minage
8 25.5
3 25.5
7 35.0

Figure 5.18 Order in which Tuples Are Fetched

5.9 DYNAMIC SQL *

Consider an application such as a spreadsheet or a graphical front-end that needs to
access data from a DBMS. Such an application must accept commands from a user

SQL: Queries, Programming, Triggers 157

and, based on what the user needs, generate appropriate SQL statements to retrieve
the necessary data. In such situations, we may not be able to predict in advance just
what SQL statements need to be executed, even though there is (presumably) some
algorithm by which the application can construct the necessary SQL statements once
a user’s command is issued.

SQL provides some facilities to deal with such situations; these are referred to as
dynamic SQL. There are two main commands, PREPARE and EXECUTE, which we
illustrate through a simple example:

char c sqlstring[] = {”DELETE FROM Sailors WHERE rating>5”};
EXEC SQL PREPARE readytogo FROM :c sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c sqlstring and initializes its value to the
string representation of an SQL command. The second statement results in this string
being parsed and compiled as an SQL command, with the resulting executable bound
to the SQL variable readytogo. (Since readytogo is an SQL variable, just like a cursor
name, it is not prefixed by a colon.) The third statement executes the command.

Many situations require the use of dynamic SQL. However, note that the preparation of
a dynamic SQL command occurs at run-time and is a run-time overhead. Interactive
and embedded SQL commands can be prepared once at compile time and then re-
executed as often as desired. Consequently you should limit the use of dynamic SQL
to situations in which it is essential.

There are many more things to know about dynamic SQL—how can we pass parameters
from the host langugage program to the SQL statement being prepared, for example?—
but we will not discuss it further; readers interested in using dynamic SQL should
consult one of the many good books devoted to SQL.

5.10 ODBC AND JDBC *

Embedded SQL enables the integration of SQL with a general-purpose programming
language. As described in Section 5.7, a DBMS-specific preprocessor transforms the
embedded SQL statements into function calls in the host language. The details of
this translation vary across DBMS, and therefore even though the source code can
be compiled to work with different DBMSs, the final executable works only with one
specific DBMS.

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase Con-
nectivity, also enable the integration of SQL with a general-purpose programming
language. Both ODBC and JDBC expose database capabilities in a standardized way

158 Chapter 5

to the application programmer through an application programming interface
(API). In contrast to embedded SQL, ODBC and JDBC allow a single executable to
access different DBMSs without recompilation. Thus, while embedded SQL is DBMS-
independent only at the source code level, applications using ODBC or JDBC are
DBMS-independent at the source code level and at the level of the executable. In
addition, using ODBC or JDBC an application can access not only one DBMS, but
several different DBMSs simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introducing
an extra level of indirection. All direct interaction with a specific DBMS happens
through a DBMS specific driver. A driver is a software program that translates the
ODBC or JDBC calls into DBMS-specific calls. Since it is only known at run-time
which DBMSs the application is going to access, drivers are loaded dynamically on
demand. Existing drivers are registered with a driver manager, which manages the
set of existing drivers.

One interesting point to note is that a driver does not necessarily need to interact with
a DBMS that understands SQL. It is sufficient that the driver translates the SQL com-
mands from the application into equivalent commands that the DBMS understands.
Therefore, we will refer in the remainder of this section to a data storage subsystem
with which a driver interacts as a data source.

An application that interacts with a data source through ODBC or JDBC performs
the following steps. A data source is selected, the corresponding driver is dynamically
loaded, and a connection with the data source is established. There is no limit on the
number of open connections and an application can have several open connections to
different data sources. Each connection has transaction semantics; that is, changes
from one connection are only visible to other connections after the connection has
committed its changes. While a connection is open, transactions are executed by
submitting SQL statements, retrieving results, processing errors and finally committing
or rolling back. The application disconnects from the data source to terminate the
interaction.

5.10.1 Architecture

The architecture of ODBC/JDBC has four main components: the application, the
driver manager, several data source specific drivers, and the corresponding data sources.
Each component has different roles, as explained in the next paragraph.

The application initiates and terminates the connection with the data source. It sets
transaction boundaries, submits SQL statements, and retrieves the results—all through
a well-defined interface as specified by the ODBC/JDBC API. The primary goal of the
driver manager is to load ODBC/JDBC drivers and to pass ODBC/JDBC function

SQL: Queries, Programming, Triggers 159

calls from the application to the correct driver. The driver manager also handles
ODBC/JDBC initialization and information calls from the applications and can log
all function calls. In addition, the driver manager performs some rudimentary error
checking. The driver establishes the connection with the data source. In addition
to submitting requests and returning request results, the driver translates data, error
formats, and error codes from a form that is specific to the data source into the
ODBC/JDBC standard. The data source processes commands from the driver and
returns the results.

Depending on the relative location of the data source and the application, several
architectural scenarios are possible. For example, drivers in JDBC are classified into
four types depending on the architectural relationship between the application and the
data source:

1. Type I (bridges) This type of driver translates JDBC function calls into function
calls of another API that is not native to the DBMS. An example is an ODBC-
JDBC bridge. In this case the application loads only one driver, namely the
bridge.

2. Type II (direct translation to the native API) This driver translates JDBC
function calls directly into method invocations of the API of one specific data
source. The driver is dynamically linked, and is specific to the data source.

3. Type III (network bridges) The driver talks over a network to a middle-ware
server that translates the JDBC requests into DBMS-specific method invocations.
In this case, the driver on the client site (i.e., the network bridge) is not DBMS-
specific.

4. Type IV (direct translation over sockets) Instead of calling the DBMS API
directly, the driver communicates with the DBMS through Java sockets. In this
case the driver on the client side is DBMS-specific.

5.10.2 An Example Using JDBC

JDBC is a collection of Java classes and interfaces that enables database access from
programs written in the Java programming language. The classes and interfaces are
part of the java.sql package. In this section, we illustrate the individual steps that
are required to submit a database query to a data source and to retrieve the results.

In JDBC, data source drivers are managed by the Drivermanager class, which main-
tains a list of all currently loaded drivers. The Drivermanager class has methods
registerDriver, deregisterDriver, and getDrivers to enable dynamic addition
and deletion of drivers.

160 Chapter 5

The first step in connecting to a data source is to load the corresponding JDBC driver.
This is accomplished by using the Java mechanism for dynamically loading classes.
The static method forName in the Class class returns the Java class as specified in
the argument string and executes its static constructor. The static constructor of
the dynamically loaded class loads an instance of the Driver class, and this Driver
object registers itself with the DriverManager class.

A session with a DBMS is started through creation of a Connection object. A connec-
tion can specify the granularity of transactions. If autocommit is set for a connection,
then each SQL statement is considered to be its own transaction. If autocommit is off,
then a series of statements that compose a transaction can be committed using the
commit method of the Connection class. The Connection class has methods to set
the autocommit mode (setAutoCommit) and to retrieve the current autocommit mode
(getAutoCommit). A transaction can be aborted using the rollback method.

The following Java example code dynamically loads a data source driver and establishes
a connection:

Class.forName(“oracle/jdbc.driver.OracleDriver”);
Connection connection = DriverManager.getConnection(url,uid,password);

In considering the interaction of an application with a data source, the issues that
we encountered in the context of embedded SQL—e.g., passing information between
the application and the data source through shared variables—arise again. To deal
with such issues, JDBC provides special data types and specifies their relationship to
corresponding SQL data types. JDBC allows the creation of SQL statements that
refer to variables in the Java host program. Similar to the SQLSTATE variable, JDBC
throws an SQLException if an error occurs. The information includes SQLState, a
string describing the error. As in embedded SQL, JDBC provides the concept of a
cursor through the ResultSet class.

While a complete discussion of the actual implementation of these concepts is beyond
the scope of the discussion here, we complete this section by considering two illustrative
JDBC code fragments.

In our first example, we show how JDBC refers to Java variables inside an SQL state-
ment. During a session, all interactions with a data source are encapsulated into objects
that are created by the Connection object. SQL statements that refer to variables in
the host program are objects of the class PreparedStatement. Whereas in embedded
SQL the actual names of the host language variables appear in the SQL query text,
JDBC replaces each parameter with a “?” and then sets values of each parameter at
run-time through settype methods, where type is the type of the parameter. These
points are illustrated in the following Java program fragment, which inserts one row
into the Sailors relation:

SQL: Queries, Programming, Triggers 161

connection.setAutoCommit(false);
PreparedStatement pstmt =

connection.prepareStatement(“INSERT INTO Sailors VALUES ?,?,?,?”);
pstmt.setString(1, j name); pstmt.setInt(2, j id);
pstmt.setInt(3, j rating); pstmt.setInt(4, j age);
pstmt.execute();
pstmt.close();
connection.commit();

Our second example shows how the ResultSet class provides the functionality of a
cursor. After the SQL statement stmt is executed, result is positioned right before the
first row. The method next fetches the next row and enables reading of its values
through gettype methods, where type is the type of the field.

Statement stmt = connection.createStatement();
ResultSet res = stmt.executeQuery(“SELECT S.name, S.age FROM Sailors S”);
while (result.next()) {

String name = res.getString(1);
int age = res.getInt(2);
// process result row

}
stmt.close();

5.11 COMPLEX INTEGRITY CONSTRAINTS IN SQL-92 *

In this section we discuss the specification of complex integrity constraints in SQL-92,
utilizing the full power of SQL query constructs. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.11.1 Constraints over a Single Table

We can specify complex constraints over a single table using table constraints, which
have the form CHECK conditional-expression. For example, to ensure that rating must
be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

To enforce the constraint that Interlake boats cannot be reserved, we could use:

162 Chapter 5

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT noInterlakeRes
CHECK (‘Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)))

When a row is inserted into Reserves or an existing row is modified, the conditional
expression in the CHECK constraint is evaluated. If it evaluates to false, the command
is rejected.

5.11.2 Domain Constraints

A user can define a new domain using the CREATE DOMAIN statement, which makes use
of CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 0
CHECK (VALUE >= 1 AND VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value
must be of this type. Values in ratingval are further restricted by using a CHECK
constraint; in defining this constraint, we use the keyword VALUE to refer to a value
in the domain. By using this facility, we can constrain the values that belong to a
domain using the full power of SQL queries. Once a domain is defined, the name of
the domain can be used to restrict column values in a table; we can use the following
line in a schema declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a domain. If
the domain ratingval is used for a column in some relation, and no value is entered
for this column in an inserted tuple, the default value 0 associated with ratingval is
used. (If a default value is specified for the column as part of the table definition, this
takes precedence over the default value associated with the domain.) This feature can
be used to minimize data entry errors; common default values are automatically filled
in rather than being typed in.

SQL-92’s support for the concept of a domain is limited in an important respect.
For example, we can define two domains called Sailorid and Boatclass, each using

SQL: Queries, Programming, Triggers 163

INTEGER as a base type. The intent is to force a comparison of a Sailorid value with a
Boatclass value to always fail (since they are drawn from different domains); however,
since they both have the same base type, INTEGER, the comparison will succeed in SQL-
92. This problem is addressed through the introduction of distinct types in SQL:1999
(see Section 3.4).

5.11.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional expression
in the CHECK clause can refer to other tables. Table constraints are required to hold
only if the associated table is nonempty. Thus, when a constraint involves two or more
tables, the table constraint mechanism is sometimes cumbersome and not quite what
is desired. To cover such situations, SQL supports the creation of assertions, which
are constraints not associated with any one table.

As an example, suppose that we wish to enforce the constraint that the number of
boats plus the number of sailors should be less than 100. (This condition might be
required, say, to qualify as a ‘small’ sailing club.) We could try the following table
constraint:

CREATE TABLE Sailors (sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10)
CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B)
< 100))

This solution suffers from two drawbacks. It is associated with Sailors, although it
involves Boats in a completely symmetric way. More important, if the Sailors table is
empty, this constraint is defined (as per the semantics of table constraints) to always
hold, even if we have more than 100 rows in Boats! We could extend this constraint
specification to check that Sailors is nonempty, but this approach becomes very cum-
bersome. The best solution is to create an assertion, as follows:

CREATE ASSERTION smallClub
CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B)
< 100)

164 Chapter 5

5.12 TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database, and is typically specified by the DBA. A database
that has a set of associated triggers is called an active database. A trigger description
contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its con-
dition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is executed
when the database is modified in a way that matches the event specification. An
insert, delete or update statement could activate a trigger, regardless of which user
or application invoked the activating statement; users may not even be aware that a
trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries are
less than $100,000) or a query. A query is interpreted as true if the answer set is
nonempty, and false if the query has no answers. If the condition part evaluates to
true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of the
trigger, refer to old and new values of tuples modified by the statement activating
the trigger, execute new queries, and make changes to the database. In fact, an
action can even execute a series of data-definition commands (e.g., create new tables,
change authorizations) and transaction-oriented commands (e.g., commit), or call host-
language procedures.

An important issue is when the action part of a trigger executes in relation to the
statement that activated the trigger. For example, a statement that inserts records
into the Students table may activate a trigger that is used to maintain statistics on how
many students younger than 18 are inserted at a time by a typical insert statement.
Depending on exactly what the trigger does, we may want its action to execute before
changes are made to the Students table, or after: a trigger that initializes a variable
used to count the number of qualifying insertions should be executed before, and a
trigger that executes once per qualifying inserted record and increments the variable
should be executed after each record is inserted (because we may want to examine the
values in the new record to determine the action).

SQL: Queries, Programming, Triggers 165

5.12.1 Examples of Triggers in SQL

The examples shown in Figure 5.19, written using Oracle 7 Server syntax for defining
triggers, illustrate the basic concepts behind triggers. (The SQL:1999 syntax for these
triggers is similar; we will see an example using SQL:1999 syntax shortly.) The trigger
called init count initializes a counter variable before every execution of an INSERT
statement that adds tuples to the Students relation. The trigger called incr count
increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */
DECLARE

count INTEGER;
BEGIN /* Action */

count := 0;
END

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */
WHEN (new.age < 18) /* Condition; ‘new’ is just-inserted tuple */
FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */
count := count + 1;

END

Figure 5.19 Examples Illustrating Triggers

One of the example triggers in Figure 5.19 executes before the activating statement,
and the other example executes after. A trigger can also be scheduled to execute
instead of the activating statement, or in deferred fashion, at the end of the transaction
containing the activating statement, or in asynchronous fashion, as part of a separate
transaction.

The example in Figure 5.19 illustrates another point about trigger execution: A user
must be able to specify whether a trigger is to be executed once per modified record
or once per activating statement. If the action depends on individual changed records,
for example, we have to examine the age field of the inserted Students record to decide
whether to increment the count, the triggering event should be defined to occur for
each modified record; the FOR EACH ROW clause is used to do this. Such a trigger is
called a row-level trigger. On the other hand, the init count trigger is executed just
once per INSERT statement, regardless of the number of records inserted, because we
have omitted the FOR EACH ROW phrase. Such a trigger is called a statement-level
trigger.

166 Chapter 5

In Figure 5.19, the keyword new refers to the newly inserted tuple. If an existing tuple
were modified, the keywords old and new could be used to refer to the values before
and after the modification. The SQL:1999 draft also allows the action part of a trigger
to refer to the set of changed records, rather than just one changed record at a time.
For example, it would be useful to be able to refer to the set of inserted Students
records in a trigger that executes once after the INSERT statement; we could count the
number of inserted records with age < 18 through an SQL query over this set. Such
a trigger is shown in Figure 5.20 and is an alternative to the triggers shown in Figure
5.19.

The definition in Figure 5.20 uses the syntax of the SQL:1999 draft, in order to il-
lustrate the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name (In-
sertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT clause
specifies a statement-level trigger and can be omitted because it is the default. This
definition does not have a WHEN clause; if such a clause is included, it follows the FOR
EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into Students,
and inserts a single tuple into a table that contains statistics on modifications to
database tables. The first two fields of the tuple contain constants (identifying the
modified table, Students, and the kind of modifying statement, an INSERT), and the
third field is the number of inserted Students tuples with age < 18. (The trigger in
Figure 5.19 only computes the count; an additional trigger is required to insert the
appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */
REFERENCING NEW TABLE AS InsertedTuples
FOR EACH STATEMENT

INSERT /* Action */
INTO StatisticsTable(ModifiedTable, ModificationType, Count)
SELECT ‘Students’, ‘Insert’, COUNT *
FROM InsertedTuples I
WHERE I.age < 18

Figure 5.20 Set-Oriented Trigger

5.13 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database, but they
must be used with caution. The effect of a collection of triggers can be very complex,

SQL: Queries, Programming, Triggers 167

and maintaining an active database can become very difficult. Often, a judicious use
of integrity constraints can replace the use of triggers.

5.13.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement that
modifies the database, it checks whether some trigger is activated by the statement. If
so, the DBMS processes the trigger by evaluating its condition part, and then (if the
condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes all of
them, in some arbitrary order. An important point is that the execution of the action
part of a trigger could in turn activate another trigger. In particular, the execution of
the action part of a trigger could again activate the same trigger; such triggers are called
recursive triggers. The potential for such chain activations, and the unpredictable
order in which a DBMS processes activated triggers, can make it difficult to understand
the effect of a collection of triggers.

5.13.2 Constraints versus Triggers

A common use of triggers is to maintain database consistency, and in such cases,
we should always consider whether using an integrity constraint (e.g., a foreign key
constraint) will achieve the same goals. The meaning of a constraint is not defined
operationally, unlike the effect of a trigger. This property makes a constraint easier
to understand, and also gives the DBMS more opportunities to optimize execution.
A constraint also prevents the data from being made inconsistent by any kind of
statement, whereas a trigger is activated by a specific kind of statement (e.g., an insert
or delete statement). Again, this restriction makes a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more flexible
ways, as the following examples illustrate.

Suppose that we have a table called Orders with fields itemid, quantity, customerid,
and unitprice. When a customer places an order, the first three field values are
filled in by the user (in this example, a sales clerk). The fourth field’s value can
be obtained from a table called Items, but it is important to include it in the
Orders table to have a complete record of the order, in case the price of the item
is subsequently changed. We can define a trigger to look up this value and include
it in the fourth field of a newly inserted record. In addition to reducing the number
of fields that the clerk has to type in, this trigger eliminates the possibility of an
entry error leading to an inconsistent price in the Orders table.

168 Chapter 5

Continuing with the above example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being charged
to a credit line issued by the company, we may want to check whether the total
cost of the purchase is within the current credit limit. We can use a trigger to do
the check; indeed, we can even use a CHECK constraint. Using a trigger, however,
allows us to implement more sophisticated policies for dealing with purchases that
exceed a credit limit. For instance, we may allow purchases that exceed the limit
by no more than 10% if the customer has dealt with the company for at least a
year, and add the customer to a table of candidates for credit limit increases.

5.13.3 Other Uses of Triggers

Many potential uses of triggers go beyond integrity maintenance. Triggers can alert
users to unusual events (as reflected in updates to the database). For example, we
may want to check whether a customer placing an order has made enough purchases
in the past month to qualify for an additional discount; if so, the sales clerk must be
informed so that he can tell the customer, and possibly generate additional sales! We
can relay this information by using a trigger that checks recent purchases and prints a
message if the customer qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks. For
example, each time a customer places an order, we can create a record with the cus-
tomer’s id and current credit limit, and insert this record in a customer history table.
Subsequent analysis of this table might suggest candidates for an increased credit limit
(e.g., customers who have never failed to pay a bill on time and who have come within
10% of their credit limit at least three times in the last month).

As the examples in Section 5.12 illustrate, we can use triggers to gather statistics on
table accesses and modifications. Some database systems even use triggers internally
as the basis for managing replicas of relations (Section 21.10.1). Our list of potential
uses of triggers is not exhaustive; for example, triggers have also been considered for
workflow management and enforcing business rules.

5.14 POINTS TO REVIEW

A basic SQL query has a SELECT, a FROM, and a WHERE clause. The query answer
is a multiset of tuples. Duplicates in the query result can be removed by using
DISTINCT in the SELECT clause. Relation names in the WHERE clause can be fol-
lowed by a range variable. The output can involve arithmetic or string expressions
over column names and constants and the output columns can be renamed using
AS. SQL provides string pattern matching capabilities through the LIKE operator.
(Section 5.2)

SQL: Queries, Programming, Triggers 169

SQL provides the following (multi)set operations: UNION, INTERSECT, and EXCEPT.
(Section 5.3)

Queries that have (sub-)queries are called nested queries. Nested queries allow us
to express conditions that refer to tuples that are results of a query themselves.
Nested queries are often correlated, i.e., the subquery contains variables that are
bound to values in the outer (main) query. In the WHERE clause of an SQL query,
complex expressions using nested queries can be formed using IN, EXISTS, UNIQUE,
ANY, and ALL. Using nested queries, we can express division in SQL. (Section 5.4)

SQL supports the aggregate operators COUNT, SUM, AVERAGE, MAX, and MIN. (Sec-
tion 5.5)

Grouping in SQL extends the basic query form by the GROUP BY and HAVING
clauses. (Section 5.5.1)

A special column value named null denotes unknown values. The treatment of
null values is based upon a three-valued logic involving true, false, and unknown.
(Section 5.6)

SQL commands can be executed from within a host language such as C. Concep-
tually, the main issue is that of data type mismatches between SQL and the host
language. (Section 5.7)

Typical programming languages do not have a data type that corresponds to a col-
lection of records (i.e., tables). Embedded SQL provides the cursor mechanism to
address this problem by allowing us to retrieve rows one at a time. (Section 5.8)

Dynamic SQL enables interaction with a DBMS from a host language without
having the SQL commands fixed at compile time in the source code. (Section 5.9)

ODBC and JDBC are application programming interfaces that introduce a layer of
indirection between the application and the DBMS. This layer enables abstraction
from the DBMS at the level of the executable. (Section 5.10)

The query capabilities of SQL can be used to specify a rich class of integrity con-
straints, including domain constraints, CHECK constraints, and assertions. (Sec-
tion 5.11)

A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database. A trigger has three parts. The event describes
the change that activates the trigger. The condition is a query that is run when-
ever the trigger is activated. The action is the procedure that is executed if the
trigger is activated and the condition is true. A row-level trigger is activated for
each modified record, a statement-level trigger is activated only once per INSERT
command. (Section 5.12)

170 Chapter 5

What triggers are activated in what order can be hard to understand because a
statement can activate more than one trigger and the action of one trigger can
activate other triggers. Triggers are more flexible than integrity constraints and
the potential uses of triggers go beyond maintaining database integrity. (Section
5.13)

EXERCISES

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per

student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the answers.

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in a course

taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students

enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the same

time.

5. Find the names of faculty members who teach in every room in which some class is

taught.

6. Find the names of faculty members for whom the combined enrollment of the courses

that they teach is less than five.

7. Print the Level and the average age of students for that Level, for each Level.

8. Print the Level and the average age of students for that Level, for all Levels except JR.

9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

11. For each age value that appears in Students, find the level value that appears most often.

For example, if there are more FR level students aged 18 than SR, JR, or SO students

aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

SQL: Queries, Programming, Triggers 171

The Catalog relation lists the prices charged for parts by Suppliers. Write the following

queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of that

part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; every

pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the

following queries in SQL. (Additional queries using the same schema are listed in the exercises

for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them earn more than

80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the maximum

cruisingrange of the aircraft that he (or she) is certified for.

3. Find the names of pilots whose salary is less than the price of the cheapest route from

Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1,000 miles, find the name of the aircraft and the

average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

6. Find the aids of all aircraft that can be used on routes from Los Angeles to Chicago.

7. Identify the flights that can be piloted by every pilot who makes more than $100,000.

(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising

range.)

8. Print the enames of pilots who can operate planes with cruisingrange greater than 3,000

miles, but are not certified on any Boeing aircraft.

172 Chapter 5

sid sname rating age

18 jones 3 30.0

41 jonah 6 56.0

22 ahab 7 44.0

63 moby null 15.0

Figure 5.21 An Instance of Sailors

9. A customer wants to travel from Madison to New York with no more than two changes

of flight. List the choice of departure times from Madison if the customer wants to arrive

in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average salary of

all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average salary

for pilots.

Exercise 5.4 Consider the following relational schema. An employee can work in more than

one department; the pct time field of the Works relation shows the percentage of time that a

given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware department

and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where the

part-time and full-time employees add up to at least that many full-time employees),

print the did together with the number of employees that work in that department.

3. Print the name of each employee whose salary exceeds the budget of all of the depart-

ments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets greater

than $1,000,000.

5. Find the enames of managers who manage the departments with the largest budget.

6. If a manager manages more than one department, he or she controls the sum of all the

budgets for those departments. Find the managerids of managers who control more than

$5,000,000.

7. Find the managerids of managers who control the largest amount.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.21.

1. Write SQL queries to compute the average rating, using AVG; the sum of the ratings,

using SUM; and the number of ratings, using COUNT.

SQL: Queries, Programming, Triggers 173

2. If you divide the sum computed above by the count, would the result be the same as

the average? How would your answer change if the above steps were carried out with

respect to the age field instead of rating?

3. Consider the following query: Find the names of sailors with a higher rating than all

sailors with age < 21. The following two SQL queries attempt to obtain the answer

to this question. Do they both compute the result? If not, explain why. Under what

conditions would they compute the same result?

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT *

FROM Sailors S2

WHERE S2.age < 21

AND S.rating <= S2.rating)
SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.age < 21)

4. Consider the instance of Sailors shown in Figure 5.21. Let us define instance S1 of Sailors

to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the

given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions.

1. Explain the term impedance mismatch in the context of embedding SQL commands in a

host language such as C.

2. How can the value of a host language variable be passed to an embedded SQL command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL, that is, interactive

use of SQL commands is not enough, and some host language capabilities are needed.

6. Write a C program with embedded SQL commands to address your example in the

previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation of

sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard deviation

of the average age of all sailors.

174 Chapter 5

9. Explain how you would write a C program to compute the transitive closure of a graph,

represented as an SQL relation Edges(from, to), using embedded SQL commands. (You

don’t have to write the program; just explain the main points to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and scrol-

lability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers

sorted by age. Which fields of Sailors can such a cursor not update? Why?

12. Give an example of a situation that calls for dynamic SQL, that is, even embedded SQL

is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that

follow:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at least

$10,000.

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30. Compare

this assertion with the equivalent table constraint. Explain which is better.

4. Write SQL statements to delete all information about employees whose salaries exceed

that of the manager of one or more departments that they work in. Be sure to ensure

that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per

student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create the above relations, including appropriate

versions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the

primary and foreign key constraint; if so, explain how it is implied. If the constraint

cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,

deletes, and updates on specific relations) must be monitored to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment

of 30 students.

SQL: Queries, Programming, Triggers 175

(b) At least one class meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called Math101.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest

meets at value) meets should not be the same as the room in which the latest

scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice the

number of faculty members in the department with the fewest faculty members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single update).

(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater than the

number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with deptid=33

is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast

triggers with other integrity constraints supported by SQL.

Exercise 5.10 Consider the following relational schema. An employee can work in more

than one department; the pct time field of the Works relation shows the percentage of time

that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser-

tions) or SQL:1999 triggers to ensure each of the following requirements, considered indepen-

dently.

1. Employees must make a minimum salary of $1,000.

2. Every manager must be also be an employee.

3. The total percentage of all appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she manages.

5. Whenever an employee is given a raise, the manager’s salary must be increased to be at

least as much.

6. Whenever an employee is given a raise, the manager’s salary must be increased to be

at least as much. Further, whenever an employee is given a raise, the department’s

budget must be increased to be greater than the sum of salaries of all employees in the

department.

176 Chapter 5

PROJECT-BASED EXERCISES

Exercise 5.11 Identify the subset of SQL-92 queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES

The original version of SQL was developed as the query language for IBM’s System R project,

and its early development can be traced in [90, 130]. SQL has since become the most widely

used relational query language, and its development is now subject to an international stan-

dardization process.

A very readable and comprehensive treatment of SQL-92 is presented by Melton and Simon

in [455]; we refer readers to this book and to [170] for a more detailed treatment. Date offers

an insightful critique of SQL in [167]. Although some of the problems have been addressed

in SQL-92, others remain. A formal semantics for a large subset of SQL queries is presented

in [489]. SQL-92 is the current International Standards Organization (ISO) and American

National Standards Institute (ANSI) standard. Melton is the editor of the ANSI document on

the SQL-92 standard, document X3.135-1992. The corresponding ISO document is ISO/IEC

9075:1992. A successor, called SQL:1999, builds on SQL-92 and includes procedural language

extensions, user-defined types, row ids, a call-level interface, multimedia data types, recursive

queries, and other enhancements; SQL:1999 is close to ratification (as of June 1999). Drafts

of the SQL:1999 (previously called SQL3) deliberations are available at the following URL:

ftp://jerry.ece.umassd.edu/isowg3/

The SQL:1999 standard is discussed in [200].

Information on ODBC can be found on Microsoft’s web page (www.microsoft.com/data/odbc),

and information on JDBC can be found on the JavaSoft web page (java.sun.com/products/jdbc).

There exist many books on ODBC, for example, Sander’s ODBC Developer’s Guide [567] and

the Microsoft ODBC SDK [463]. Books on JDBC include works by Hamilton et al. [304],

Reese [541], and White et al. [678].

[679] contains a collection of papers that cover the active database field. [695] includes a

good in-depth introduction to active rules, covering semantics, applications and design issues.

[213] discusses SQL extensions for specifying integrity constraint checks through triggers.

[104] also discusses a procedural mechanism, called an alerter, for monitoring a database.

[154] is a recent paper that suggests how triggers might be incorporated into SQL extensions.

Influential active database prototypes include Ariel [309], HiPAC [448], ODE [14], Postgres

[632], RDL [601], and Sentinel [29]. [126] compares various architectures for active database

systems.

[28] considers conditions under which a collection of active rules has the same behavior,

independent of evaluation order. Semantics of active databases is also studied in [244] and

[693]. Designing and managing complex rule systems is discussed in [50, 190]. [121] discusses

rule management using Chimera, a data model and language for active database systems.

