
ABSTRACT
There exist applications and services which can detect document
similarity, such as Turnitin [4] and MyDropBox1. Both compare a
document in English to documents of their collections. TESSY
(Test of Text Similarity) has also been developed in Gadjah Mada
University [4]. This software checks documents similarities, but
does not give information about which sentences are similar
among the documents.

In this paper, we discuss a prototype of anti-plagiarism software
that was developed as a web-based application built using Java. It
has the ability to read documents in several formats, such as MS
Word, MS Excel, MS Power Point, PDF, and plain text. The
prototype functions by indexing documents, comparing documents
and provides information about which sentences are similar in the
documents together with the similarity types of sentences. In terms
of speed performance, the software needs further improvement,
but in general the result is promising as it can index and compare
documents written in Indonesian. It also generates reports of the
similar sentences position (by highlighting sentences), and
similarity type of the sentences.

Keywords
plagiarism, document similarity, similarity type, morphological
rules

1. INTRODUCTION
Plagiarism is a significant issue on most college and university
campuses. In Indonesia, especially, in the beginning of 2010, the
academician were shocked by the indication of plagiarism
conducted by a professor [1]. This lead to the rising importance of
implementing thoroughful plagiarism check for any kind of
intelectual property, especially scientific documents. Plagiarism
detection software is considered a powerful tool to fight against
plagiarism.
This paper discusses a prototype of a web-based and open source
anti-plagiarism software. Turnitin will be used as a reference
application in developing the prototype. The prototype provides
several features: comparison of documents in terms of sentence
similarity, giving type of similarity (exact match, insertion,
deletion, word change), display comparison result between two
documents which contain similar sentences and generating reports
of the comparison along with the highlighted sentences suspected
to be plagiated form othe resources.
The paper is organized as follows. In section 2, we present some
related work.s Section 3 explains the system design components
1 http://www.mydropbox.com/

used in the prototype. Section 4 describes the implementation of
the design. Last but not least is section 5 which discuss the
experimental result of the system performance, conclusion and
the future works.

2. RELATED WORKS
2.1 Plagiarism Pattern
Comparing unit (chunking unit), overlap measure function, and
plagiarism decision function crucially affect the performance of a
Document Copy Detection system [2].
Let So is a part of the original document and Sc of the query
document. The similarity – Sim(So, Sc) – can be calculated as
follows [3]:
S0 = {w1, w2, w3, ..., wn} , Sc = {w1, w2, w3, ..., wm}

Comm (S0, Sc) = S0 ∩Sc,, Diff(S0, Sc) = S0 - Sc

Syn(w) = {synonym of w}

SynWord(S0, Sc) =

WordOverlap(S0, Sc) = ,

where α is weight value

SizeOverlap (S0, Sc) =

Sim (S0, Sc) =

Table 1 shows how to decide plagiarism patterns.

2.2 Stemming
Stemming is a core natural language processing technique for
efficient and effective Information Retrieval. It is used to
transform word variants to their common root word by applying
morphological rules. For Stemming Bahasa (Indonesian
Language), the prototype will use algorithm form Asian, Williams,
and Tahaghogi [2]
Before considering how the scheme works, we consider the basic
groupings of affixes used as a basis for the approach, and how
these definitions are combined to form a framework to implement
the rules. The scheme groups affixes into categories:

1. Inflection suffixes – the set of suffixes that do not alter
the root word. The inflections are further divided into:
(a). Particles (P) – including “-lah" and “-kah"

Prototype of Web-based Application for Detecting
Plagiarism

Meredita Susanti
Computer Science Departement

Gadjah Mada University
Yogyakarta

susantymeredita@yahoo.com

Khabib Mustofa
Computer Science Departement

Gadjah Mada University
Yogyakarta

khabib@ugm.ac.id

http://www.mydropbox.com/

(b). Possessive pronouns (PP) – including “-ku", “-mu",
and “-nya"

Table 1. Plagiarism Pattern Decision Parameter
Plagiarism

Pattern
Decision Parameter

Copy
Exactly

WordOverlap(S0, SC) =1 SizeOverlap(S0,SC) = 0

Word
Insertion

SizeOverlap (S0, SC) ≠ 0 Diff(S0, SC) > 1

Word
removal

SizeOverlap (S0, SC) ≠ 0 Diff(S0, SC) > 1

Changing
word

1<WordOverlap(S0, SC)<∞ SizeOverlap (S0, SC) =
0

Changing
Structure

WordOverlap(S0, SC) = 1 SizeOverlap (S0, SC) =
0

Particle and possessive pronoun inflections can appear
together and, if they do, possessive pronouns appear
before particles. A word can have at most one particle
and one possessive pronoun, and these may be applied
directly to root words or to words that have a derivation
suffix. For example, “makan" (to eat) may be appended
with derivation suffix “-an" to give “makanan" (food).
This can be suffixed with “-nya" to give “makanannya"
(a possessive form of “food")

2. Derivation suffixes – the set of suffixes that are directly
applied to root words. There can be only one derivation
suffix per word. For example, the word “lapor" (to
report) can be suffixed by the derivation suffix ”-kan" to
become “laporkan" (go to report). In turn, this can be
suffixed with, for example, an inflection suffix “-lah" to
become “laporkanlah" (please go to report)

3. Derivation prefixes : the set of prefixes that are applied
either directly to root words, or to words that have up to
two other derivation prefixes. For example, the
derivation prefixes “mem-" and “-per-" may be
prepended to “indahkannya" to give
“memperindahkannya" (the act of beautifying). The
classification of affixes as inflections and derivations
leads to an order of use:

[DP+[DP+[DP+]]] root-word [[+DS][+PP][+P]]

3. SYSTEM COMPONENT DESIGN
We employed a use case diagram as shown in figure 1 to describe
system functionality. There are 3 main scenarios,
UploadDocument, CheckDocument, and
DownloadPdfReport. This paper will only describe the
CheckDocument scenario. In this scenarion, the cases as
mentioned in the table 1 to be covered are: copy exactly, word
removal, word insertion and structure change and limited
changing word .
The CheckDocument scenario will check the query document
(document to be compared) with existing documents (original
documents) in the database. After indexing the query document,

the application gets the identity of document, such as; author,
created date, and file extension. File extension is used to
determine which API will extract document, then it compares
words, sentences, or paragraphs of the original document with
query document. Sentences in the query document that are similar
to the original document will be highlighted with a different color.

Figure 1 Use Case Diagram

The detail process of the CheckDocument scenario is as
follows:

1. get content and metadata of the documents : query
document (QD) and original/reference document (RD)

2. parse content into sentences
3. compare sentenceQD with sentenceRD. If both are

equal, it results in degreeOfCopy to be “copy exactly”
and then do step 5, otherwise do step 4

4. parse sentence into words and trim the words
(eliminating connecting words, such as: “di”, “ke”,
“dari”, “untuk”). If trimmed words of RD contains all
trimmed words of QD, this can be classified to be “copy
exactly” case, otherwise do stemming prosess (removing
prefix, suffix or infix to find bare words by consulting to
a dictionary)
a. if the set of stemmed words of RD contains all

stemmed words of QD this means a word removal
case. Conversely, it is classified as word insertion
case.

b. If the set of stemmed words of RD is equal with
set of stemmed words of QD, this can be
considered a changing structure

c. if it is necessary to check the word changing, the
process is more complicated as one more step is
needed. The process includes checking each
root/bare word resulting from the stemming process
of the QD to find their synonym as recorded in the
dictionary. If a word of QD is not part of the set of
stemmed words of RD but the synonym of the
word of QD is part of the set of stemmed word of
RD then the sentence of QD is classified to be a
case of word change pattern.

If none of the above case is matched, the sentence of QD
is not suspected as plagiated from any sources, the spe
continues to step 7.

5. record index sentenceQD, index sentenceRD,
filenameRD, degreeOfCopy

6. add HTML tags to mark the suspected sentences and
give proper colouring for each tags in the document.

7. Repeat step 3 – 6 until all sentences are compared.
8. generate report of PDF format from the coloured

document
9. present report into web and provide link to download

PDF report

4. SYSTEM ARCHITECTURE
The architecture of the system developed is shown on Figure 2.

PDF Parser MS Word Parser MS Excel Parser MS Power Point
Parser Plain Text Parser

PDF File MS Word File MS Excel File MS Power Point
File Plain text

Text
Content

Minion method
for indexing

Minion
Index

My SQL database

Java method for
search similar

sentence

Display :
JSP Pages

Java method for
database
retrieval

Java Method for
insert data to

Database

Similar
sentence

iText method to
generate PDF

file

Java method for
highlighting
similar term

Figure 2 System Architecture of the prototype
Document content will be read using the appropriate API based on
the file extension. The document content is then converted into a
String. Then another API – Minion – indexes this String.
The application do comparison on file content as described above
using the CheckDocument scenario, the comparing unit is
word. We get similar sentence position and the similarity pattern.
The result of the application is a report that lists position, similar
sentence(s), and the similarity type. The report also shows content
of document that was highlighted by colors. Different highlight
colors show the similarity patterns. Besides being displayed in the
Web browser, the report can be downloaded as well.

5. Class Design
As mentioned above, the main focus of the discussion is only on
the process of checking the document, including stemming and
similarity pattern finding process. The overview of the class
developed for checking the document is shown in Figure 3.

5.1.1 Stemming
Stemming process in this application is using stemming algorithm
from Jelita, Williams, and Tahaghoghi as described in section 2.2
Class Stemmer is the class which performs the stemming

process. Followings are the methods in Class Stemmer and their
functions:

a. getRootWord(String word) : Do stemming and
transform word variants to their common root.

b. checkRootWord(String word) : Check if the
common root of the word exists in the dictionary. If the
word exists, it means the word is in a common root form.

c. getSuffix(String word) : get the suffix of a word.

d. getPrefix(String word) : get the prefix of a word.

e. removeInflectionSuffix(String word,
String suffix) : remove inflection suffix from a word,
such as “-lah”, “-kah”, “-pun”, “-nya”, “-ku”, “-mu”.

f. removeDerivationSuffix(String word,
String suffix) : remove derivation suffix from a
word, such as “-kan”, “-an”, “-i”.

g. removePrefix(String word, String
prefix) : remove prefix from a word.

Figure 3 Class Diagram for CheckDocument
Unlike Andriani algorithm – as described in Jelita’s paper [2]. –
this algorithm does not record removed affixes.

In doing stemming, first the getRootWord(String) method
is called. This method checks if the word is in the dictionary. If the
word does not exist in the dictionary, it checks whether the word is
a plural form. If the word is in plural form, the singular form is the
common root. If the word is not in plural form,
getSuffix(String) method is called to get the suffix. Once
we have the suffix, it will be removed from the word. After
removing all suffixes, we check the prefix using
getPrefix(String). We remove all prefixes until we get the
common root. The order of this process is shown in Figure 4.

5.1.2 Find Plagiarism Pattern
Class PlagiarismPattern is used to compare sentences in
the original document and query document, and get the position of
a similar sentence and it’s pattern. These are the methods in
PlagiarismPattern class:

a. readSentence(String content) : breaks file
content into sentences. Sentences are stored in
ArrayList.

class Plagiarism Pattern

PlagiarismPattern

+ readSentence(String) : List<String>
+ readWord(String) : List<String>
+ minIndex(int, int, int) : int
+ checkSentence(String, String, String) : List<ResultSentences>
+ setResult(int, int, String, String) : void

ResultSentences

- indexDoc1: int
- indexDoc2: int
- type: String
- titleDoc2: String

+ getIndexDoc1() : int
+ setIndexDoc1(int) : void
+ getIndexDoc2() : int
+ setIndexDoc2(int) : void
+ setTitleDoc2(String) : void
+ getTitleDoc2() : String
+ setType(String) : void
+ getType() : String

TrimmedWord

+ trimmedWord: List<String>

+ TrimmedWord() : void
+ setTrimmedWord(List<String>) : void
+ getTrimmedWord() : List<String>

Stemmer

+ Stemmer() : void
+ getRootWord(String) : String
+ checkRootWord(String) : boolean
+ getSuffix(String) : String
+ getPrefix(String) : String
+ removeInflectionSuffix(String, String) : String
+ removeDerivationSuffix(String, String) : String
+ removePrefix(String, String) : String

TextReader

+ getText(String) : String
+ TextReader() : TextReader

b. readWord(String sentence) : breaks sentence into
words. Words are stored ini ArrayList.

c. minIndex(int index1, int index2, int
index3) : return the position of nearest punctuation.

d. checkSentence(String firstReader, String
secondReader, String secondFilename):
determines the similarity pattern of a sentence.

Figure 4 . Sequence Diagram for Stemming

Figure 5 Sequence Diagram To Find Plagiarism Pattern

In order to get information about position of a similar sentence
and it’s similarity pattern, the document content is broken into
sentences. Then we compare each sentences in the first document
with the second document. Next we record the position of the
similar sentence and it’s similarity pattern in an ArrayList.
Those similar sentences will be highlighted in the report. The
order of this process is shown in Figure 5

6. IMPLEMENTATION
6.1 Implementation ToFind Similar
Sentence
Suppose the first document is documentA and it will be compared
to the second document called document1. We do the comparison
using PlagiarismPattern.checkSentence(content
of documentA, content of document1,
document1) method.

Comparison processes are run MxNx3 times to compare the first
document with the second document (where M is total words in
documentA, and N is total words in second document1). Beside
word comparison, we also do 1 up to 6 comparisons to get the
common root of a word, depending on the number of affixes in the
word.

Method checkSentence as an implementation of Kang and
Han [3] does the following steps in order to get information about
the position of similar sentence between two documents. Suppose
we compare documentA and document1.

1. Content of documentA and document1 are broken down
into sentences. Every sentence is stored in ArrayList
of String.

2. Compare each sentence in documentA with sentences in
document1, if a sentence is exactly the same, the index
of the sentence in documentA and document1 are stored
in ResultSentences object. Besides storing index
of sentence, we also store similarity pattern in this
object.

3. If the sentences is not “same exactly”, the sentence in
document A and document 1 are broken down into
words and are stored in ArrayList of String.

4. Trimming words in document A

5. Compare words in document A with words in document
1. If ArrayList of words in document 1 contains all
words in ArrayList of words in document A, index
of these sentences are stored in ResultSentences.
If the number of words in document 1 > the number of
words in document A before trimming, then the
similarity pattern is word insertion; otherwise it is word
deletion

6. If ArrayList of word in document 1 does not match
any words in ArrayList of document A, perform
stemming the words in both documents. Save the
stemming result in ArrayList stemWord

7. Compare stemWord document 1 with stemWord
document A. If there a is similar word between them,
the type of similarity is “structure change”, then we save

sd Stemming

:Stemmer :TextReader

loop removeSuffix

loop remove prefix

checkRootWord(Sting kata) :boolean

new TextReader() :TextReader

getText() :String

getSuffix(String Kata) :String

removeInflectionSuffix()

removeDerivationSuffix()

checkRootWord(String kata) :boolean

new TextReader() :TextReader

getString(String kata) :String

getPrefix()

removePrefix()

checkRootWord(String kata) :boolean

new TextReader() :TextReader

getText() :String

sd Plagiarism Pattern

:PlagiarismPattern :Resul tSentences:Stem mer :Synonim:T rim mer

alt 1. exact match

alt 2. deletion or insertion

alt 3. Structure changes

alt 4. w ord changing

readSentence(String fi rstReader) :List<String> sentence1

readSentence(String secondReader) :List<String> sentence2

new Resul tSentences() :Resul tSentences

sentence1.equals(sentence2)
setResul t(String index1, String index2, String secondFi lenam e, "exact")

readWord(String sentence1) :List<String> word1

readWord(String sentence2) :List<String> word2

new Trim mer() :T rim mer

getT rimm edWord() :List<String> trimWord

trimWord.equals(word1.get(int index)) :boolean

word1.rem ove(int index)

word2.containsAl l (word1) :boolean
setResul t(String index1, String index2, String secondFi lenam e, "insertion" or "deletion")

new Stemm er() :Stemm er

getRootWord(word2.get(index)) :String rootWord

add(String rootWord) :List<String> word2Stem med

getRootWord(word1.get(index)) :String rootWord

word2.contains(word1.get(index)) :boolean

word2Stemm ed.contains(word1Stem med.get(index)) :boolean
setResult(String index1, String index2, String secondFi lename, "structure")

new Synonim() :Synonim

getSynonim(String kata) :String synonim

word2.contains(String synonym) :boolean
setResul t(String index1, String index2, String secondFilenam e, "word")

the index of sentences and its similarity type in
ResultSentence

We use readSentence(String) method to break down
content of document into sentences. End of a sentences is a “.”,
“!”, or “?”. We get the index of this metacharacter using
indexOf(metacharacter) method. If a metacharacter is not
found, this method will return -1.

Since we do not know which is the first metacharacter, all
metacharacter indexes are compared using minIndex(int,
int, int) method. String from index 0 until reaching the
smallest metacharacter index (not “-1”) considered as a sentence.
Then this sentence is stored in an ArrayList named
sentence. We’ll continue reading document to the end of file.

Trimming is a process for removing words that do not have
significant meaning. For example, “di”, “ke”, “dari”, “pada”.
Class Trimmer has a list of word that can be trimmed. This class
has a method, getTrimmedWord(String), returning a
Boolean value. If the word does not exist in the trimmed word list,
it will return a value of true. This method is called inside
checkSentences method. Each word is checked through
getTrimmedWord(), if the return value is true, then we
remove that word from ArrayList.

Stemming is a process removing affixes from word variant to get
the common root form. Here are the steps for stemming:

1. Check the word in the dictionary. If it does not exist,
find character “-“.

2. If character “-“ is found, compare the word before and
after that character. If both words are the same, one of
them is a common root.

3. Otherwise, check word length. If the word lengths are
the same, it was a common root. For example, “bolak-
balik”.

4. If the words and their lengths are different, do stemming
for both. If stemming results are different, the original
word is sent as a return value.

5. When there is no character “-“ in a word, continue to get
the affixes.

6. When we find affixes, removes them until we get the
common root.

7. If we do not find the affixes, return the original form.

Inside Class PlagiarismPattern, if a word does not exist in
the dictionary and return value of getRootWord() method does
not change the word form, then this word will be added into the
dictionary. We add a word into the dictionary using addKata()
method. This method is Kamus() class.

Here is the source code for adding a word.

public class Kamus {
 FileReader rd = new FileReader("kamus.txt");
 BufferedReader reader = new
BufferedReader(rd);
 StringBuilder sb = new StringBuilder();
 String currLine = null;

public Kamus() throws IOException{
 while ((currLine = reader.readLine()) !=
null) {
 sb = sb.append(currLine.concat("\r\n"));
 }
 }
 public void addKata(String kata){
 try{
 FileWriter ryt=new
FileWriter("kamus.txt");
 BufferedWriter out=new
BufferedWriter(ryt);
 out.write(sb.toString());
 out.write(new
Date().toString().concat("\r\n"));
 out.write(kata.concat("\r\n"));
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

6.2 Testing
This prototype was able to compare two documents and get
information about the index of similar sentences and their
similarity pattern. Unfortunately, it takes a long time to run this
application. Table 2 and table 3 show comparisons of the number
of sentences, words, and execution time if we are comparing two
documents in two different computers.

Table 2. Execution Time Comparison – Computer 1

First Document Second Document

TimeTotal
Sentences

Total
Words

Total
Sentences

Total
Words

27 227 27 227 16”

54 454 54 454 47”

540 4540 540 4540 59’41”

Table 3. Execution Time Comparison – Computer 2

First Document Second Document

TimeTotal
Sentences

Total
Words

Total
Sentences

Total
Words

27 227 27 227 53”

54 454 54 454 2’30”

540 4540 540 4540 167’47”

The specification of Computer 1 is Processor Intel Core 2 duo
7300 2GHz, RAM 2 GB, and Windows XP OS. Specification for
computer 2 is, Processor Intel Dual Core T2080 1,73 GHz, RAM
1GHz, and Windows Vista Home Premium OS.

7. Example of Result
To clarify and better description of the prototype performance, the
following Figure 6 and Figure 7 show some examples of the
prototype output.

Figure 6 Example of highlighted sentence and its pattern of
plagiarism

Figure 7 Report generated by prototype showing the index of
the sentence and the type of match

8. Conclusion and Future Works
A prototype of a system for checking plagiarism on a document
has been successfully developed and tested, even though the
performance still need further improvement. The prototype has
been capable of detecting several plagiarism patterns: exact match,
word removal, word insertion, structure change and limited word
change (synonym). From the testing we conclude that the number
of sentences and words in a document determines execution time.
There are other factors that also impact execution time, including
similarity type and hardware of computer. If the similarity pattern
is “copy exactly”, it consumes less time than other patterns. It is
because when a sentence is recognize as “copy exactly”,
application does not necessarily stem each word in that sentence.
Similarity pattern “word change” consumes most time. It is
because the application must execute the stemming of words and
find the synonym for each word in the sentence.

This prototype only compares and is tested using two documents.
However, nowadays, huge amounts of documents are open for
access on the internet and thus susceptible to plagiarism. Further
research on using documents available on Internet is necessary.

Execution time is the biggest issue in this prototype and further
optimization is much needed. To reduce the process time, from
software point of view, the prototype can be revised in terms of
stemming process by not repeating words that have been stemmed
before. On the other hand, from hardware point of view, the
implementation may involve a paralel processing using more than
one computer (cluster, grid) to speed up the process.

9. REFERENCES
[1] Hireka Eric,"Prof. Banyu Perwita: Plagiat ini Bukan yang
Pertama!" ,Jakarta, 2010 [online] access date 14 Feb 2010
http://edukasi.kompasiana.com/2010/02/07/prof-banyu-perwita-
plagiat-ini-bukan-yang-pertama/

[2]: Jelita, A. , Williams, H. , Tahaghoghi, S., "Stemming
Indonesian" ,Proceedings of the 28th Australasian conference on
Computer Science, 2005 [online] access date 10 Feb 2010
http://crpit.com/confpapers/CRPITV38Asian.pdf
[3]Kang, N., Han, S., Alexander, G.,"PPChecker: Plagiarism
Pattern Checker in Document Copy Detection " ,LNCS
4188,Springer Berlin, Heidelberg, 2006 [online] access date 14
Feb 2010 http://nlp.cic.ipn.mx/Publications/2006/TSD-2006-
Plagiarism.pdf
[4] Yandi M.R. and Muh. Syaifullah,"Satpam Digital di
Bulaksumur" ,Yogyakarta, 2008 [online] access date 10 Feb 2010
http://www.www.korantempo.com/id/arsip/2008/11/03/TI/mbm.20
081103.TI128613.id.html

	1. INTRODUCTION
	2. RELATED WORKS
	2.1 Plagiarism Pattern
	2.2 Stemming

	3. SYSTEM COMPONENT DESIGN
	4. SYSTEM ARCHITECTURE
	5. Class Design
	5.1.1 Stemming
	5.1.2 Find Plagiarism Pattern

	6. IMPLEMENTATION
	6.1 Implementation ToFind Similar Sentence
	6.2 Testing

	7. Example of Result
	
	8. Conclusion and Future Works
	9. REFERENCES

